5 research outputs found
Sr2V3O9 and Ba2V3O9: quasi one-dimensional spin-systems with an anomalous low temperature susceptibility
The magnetic behaviour of the low-dimensional Vanadium-oxides Sr2V3O9 and
Ba2V3O9 was investigated by means of magnetic susceptibility and specific heat
measurements. In both compounds, the results can be very well described by an
S=1/2 Heisenberg antiferromagnetic chain with an intrachain exchange of J = 82
K and J = 94 K in Sr2V3O9 and Ba2V3O9, respectively. In Sr2V3O9,
antiferromagnetic ordering at T_N = 5.3 K indicate a weak interchain exchange
of the order of J_perp ~ 2 K. In contrast, no evidence for magnetic order was
found in Ba2V3O9 down to 0.5 K, pointing to an even smaller interchain
coupling. In both compounds, we observe a pronounced Curie-like increase of the
susceptibility below 30 K, which we tentatively attribute to a staggered field
effect induced by the applied magnetic field. Results of LDA calculations
support the quasi one-dimensional character and indicate that in Sr2V3O9, the
magnetic chain is perpendicular to the structural one with the magnetic
exchange being transferred through VO4 tetrahedra.Comment: Submitted to Phy. Rev.
The magnetoelectric effects in weak ferromagnetic YMn 2O 5 modulated structure: a Landau theory approach
According to the group theory approach, linear magnetoelectric effect (ME) can not be obtained for the spatial group of YMn2O5, which was known to be mmm. Regard to the magnetic structure of these type of materials, we propose a magnetic group structure for the YMn2O5 by considering spin orientation of the Mn3+ and Mn4+ ions. According to the landau theory of phase transition it can be shown, how symmetrical rules result in relationship between quantities such as magnetic order, polarization, and etc. This relation shows a weak ferromagnetic state, associated with spontaneous polarization, arisen by Dzyaloshinskii-Moriya type interaction and a field induced change in magnetoelectrical susceptibility