4 research outputs found
Is the Luttinger liquid a new state of matter?
We are demonstrating that the Luttinger model with short range interaction
can be treated as a type of Fermi liquid. In line with the main dogma of
Landau's theory one can define a fermion excitation renormalized by interaction
and show that in terms of these fermions any excited state of the system is
described by free particles. The fermions are a mixture of renormalized right
and left electrons. The electric charge and chirality of the Landau
quasi-particle is discussed.Comment: paper 10 pages. This version of the paper will be published in
Foundations of Physic
Coherent quantum transport in narrow constrictions in the presence of a finite-range longitudinally polarized time-dependent field
We have studied the quantum transport in a narrow constriction acted upon by
a finite-range longitudinally polarized time-dependent electric field. The
electric field induces coherent inelastic scatterings which involve both
intra-subband and inter-sideband transitions. Subsequently, the dc conductance
G is found to exhibit suppressed features. These features are recognized as the
quasi-bound-state (QBS) features which are associated with electrons making
transitions to the vicinity of a subband bottom, of which the density of states
is singular. Having valley-like instead of dip-like structures, these QBS
features are different from the G characteristics for constrictions acted upon
by a finite-range time-modulated potential. In addition, the subband bottoms in
the time-dependent electric field region are shifted upward by an energy
proportional to the square of the electric field and inversely proportional to
the square of the frequency. This effective potential barrier is originated
from the square of the vector potential and it leads to the interesting
field-sensitive QBS features. An experimental set-up is proposed for the
observation of these features.Comment: 8 pages, 4 figure