2 research outputs found

    Domain structure of bulk ferromagnetic crystals in applied fields near saturation

    Full text link
    We investigate the ground state of a uniaxial ferromagnetic plate with perpendicular easy axis and subject to an applied magnetic field normal to the plate. Our interest is the asymptotic behavior of the energy in macroscopically large samples near the saturation field. We establish the scaling of the critical value of the applied field strength below saturation at which the ground state changes from the uniform to a branched domain magnetization pattern and the leading order scaling behavior of the minimal energy. Furthermore, we derive a reduced sharp-interface energy giving the precise asymptotic behavior of the minimal energy in macroscopically large plates under a physically reasonable assumption of small deviations of the magnetization from the easy axis away from domain walls. On the basis of the reduced energy, and by a formal asymptotic analysis near the transition, we derive the precise asymptotic values of the critical field strength at which non-trivial minimizers (either local or global) emerge. The non-trivial minimal energy scaling is achieved by magnetization patterns consisting of long slender needle-like domains of magnetization opposing the applied fieldComment: 38 pages, 7 figures, submitted to J. Nonlin. Sci

    Quantum nucleation in ferromagnets with tetragonal and hexagonal symmetries

    Full text link
    The phenomenon of quantum nucleation is studied in a ferromagnet in the presence of a magnetic field at an arbitrary angle. We consider the magnetocrystalline anisotropy with tetragonal symmetry and that with hexagonal symmetry, respectively. By applying the instanton method in the spin-coherent-state path-integral representation, we calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for a thin film and for a bulk solid. Our results show that the rate of quantum nucleation and the crossover temperature depend on the orientation of the external magnetic field distinctly, which provides a possible experimental test for quantum nucleation in nanometer-scale ferromagnets.Comment: 19 pages and 3 figures, Final version and accepted by Phys. Rev. B (Feb. B1 2001
    corecore