23 research outputs found

    Monitoring the Thermal Activity of Kamchatkan Volcanoes during 2015–2022 Using Remote Sensing

    Get PDF
    The powerful explosive eruptions with large volumes of volcanic ash pose a great danger to the population and jet aircraft. Global experience in monitoring volcanoes and observing changes in the parameters of their thermal anomalies is successfully used to analyze the activity of volcanoes and predict their danger to the population. The Kamchatka Peninsula in Russia, with its 30 active volcanoes, is one of the most volcanically active regions in the world. The article considers the thermal activity in 2015–2022 of the Klyuchevskoy, Sheveluch, Bezymianny, and Karymsky volcanoes, whose rock composition varies from basaltic andesite to dacite. This study is based on the analysis of the Value of Temperature Difference between the thermal Anomaly and the Background (the VTDAB), obtained by manual processing of the AVHRR, MODIS, VIIRS, and MSU-MR satellite data in the VolSatView information system. Based on the VTDAB data, the following “background activity of the volcanoes” was determined: 20 °C for Sheveluch and Bezymianny, 12 °C for Klyuchevskoy, and 13–15 °C for Karymsky. This study showed that the highest temperature of the thermal anomaly corresponds to the juvenile magmatic material that arrived on the earth’s surface. The highest VTDAB is different for each volcano; it depends on the composition of the eruptive products produced by the volcano and on the character of an eruption. A joint analysis of the dynamics of the eruption of each volcano and changes in its thermal activity made it possible to determine the range of the VTDAB for different phases of a volcanic eruption

    The VolSatView for Satellite Monitoring and Kamchatkan Volcanoes Study

    Get PDF
    Annually, from 3 to 6 Kamchatkan volcanoes produce eruptions, during which the explosions eject ash to 10-15 km a.s.l., and ash clouds spread thousands of kilometers from volcanoes. Ash clouds pose a serious threat to the modern jet aviation. Scientists of KVERT have conduct daily monitoring of Kamchatka volcanoes since 1993, to mitigate volcanic hazards to airline operations and population. Since 2014, satellite monitoring of volcanoes they carried out with the VolSatView (Remote monitoring of active volcanoes of Kamchatka and the Kuril Islands) (http://volcanoes.smislab.ru) IS. The system utilize all the available satellite data, weather and video observations to ensure continues monitoring and study of volcanic activity in Kamchatka. The VolSatView work with distributed information resources and computation systems. This work was supported by the Russian Science Foundation, project No. 16-17-00042

    The VolSatView information system for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands

    No full text
    Kamchatka and the Kuril Islands are home to 36 active volcanoes with yearly explosive eruptions that eject ash to heights of 8 to 15 km above sea level, posing hazards to jet planes. In order to reduce the risk of planes colliding with ash clouds in the north Pacific, the KVERT team affiliated with the Institute of Volcanology and Seismology of the Far East Branch of the Russian Academy of Sciences (IV&S FEB RAS) has conducted daily satellite-based monitoring of Kamchatka volcanoes since 2002. Specialists at the IV&S FEB RAS, Space Research Institute of the Russian Academy of Sciences (SRI RAS), the Computing Center of the Far East Branch of the Russian Academy of Sciences (CC FEB RAS), and the Far East Planeta Center of Space Hydrometeorology Research (FEPC SHR) have developed, introduced into practice, and were continuing to refine the VolSatView information system for Monitoring of Volcanic Activity in Kamchatka and on the Kuril Islands during the 2011–2015 period. This system enables integrated processing of various satellite data, as well as of weather and land-based information for continuous monitoring and investigation of volcanic activity in the Kuril–Kamchatka region. No other information system worldwide offers the abilities that the Vol-SatView has for studies of volcanoes. This paper shows the main abilities of the application of VolSatView for routine monitoring and retrospective analysis of volcanic activity in Kamchatka and on the Kuril Islands
    corecore