69 research outputs found
Status of the Lake Baikal Experiment
We review the present status of the Baikal Underwater Neutrino Experiment and
report on neutrino events recorded with the detector stages NT-36 and NT-96.Comment: 5 pages, 4 PostScript figures, uses here.sty and mine.sty, submitted
to the Proc. of 5th Int. Workshop on Topics in Astroparticle and Underground
Physics (LNGS INFN, Assergi, September 7-11, 1997
Registration of atmospheric neutrinos with the Baikal neutrino telescope
We present first neutrino induced events observed with a deep underwater
neutrino telescope. Data from 70 days effective life time of the BAIKAL
prototype telescope NT-96 have been analyzed with two different methods. With
the standard track reconstruction method, 9 clear upward muon candidates have
been identified, in good agreement with 8.7 events expected from Monte Carlo
calculations for atmospheric neutrinos. The second analysis is tailored to
muons coming from close to the opposite zenith. It yields 4 events, compared to
3.5 from Monte Carlo expectations. From this we derive a 90 % upper flux limit
of 1.1 * 10^-13 cm^-2 sec^-1 for muons in excess of those expected from
atmospheric neutrinos with zenith angle > 150 degrees and energy > 10GeV.Comment: 20 pages, 11 figure
The Lake Baikal neutrino experiment
We rewiew the present status of the Baikal Neutrino Project and present the
results of a search for high energy neutrinos with the detector intermediate
stage NT-96.Comment: 3 pages, 2 figures, to appear in the Proceedings of Sixth
International Workshop on Topics in Astroparticle and Underground Physics
(TAUP99), September 6-10, 1999, Pais, Franc
The Baikal Deep Underwater Neutrino Experiment: Results, Status, Future
We review the present status of the Baikal Underwater Neutrino Experiment and
present results obtained with the various stages of the stepwise increasing
detector: NT-36 (1993-95), NT-72 (1995-96) and NT-96 (1996-97). Results cover
atmospheric muons, first clear neutrino events, search for neutrinos from WIMP
annihilation in the center of the Earth, search for magnetic monopoles, and --
far from astroparticle physics -- limnology.Comment: Talk given at the Int. School on Nuclear Physics, Erice, Sept.199
Baikal-GVD
We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed
Deuteron spectrum measurements under radiation belt with PAMELA instrument
Abstract In this work the results of data analysis of the deuteron albedo radiation obtained in the PAMELA experiment are presented. PAMELA is an international space experiment carried out on board of the satellite Resurs DK-1. The high precision detectors allow to register and identify cosmic ray particles in a wide energy range. The albedo deuteron spectrum in the energy range 70 – 600 MeV/nucleon has been measured
Method for determining the homogenity of aortic wall calcifications
The objective of the research is to find out the features of location of the calcified deposits in the walls of the aorta and the extent of its heterogeneity
The Lake BAIKAL Neutrino Project: Status Report
A first large deep underwater detector for muons and neutrinos, NT-200, is currently under construction in Lake Baikal. Part of the detector consisting of 36 optical modules (NT-36) has been operated over nearly 2 years in 1993 and 1994. With this detector not only methodical questions are investigated, but also some problems in the field of astroparticle physics, cosmic ray physics and limnology. In March 1995, a 72-PMT version was deployed. We describe the construction of the detector and the present status of the project and review some of the results. 1 The NT-200 Detector The Baikal Neutrino Telescope [1] is being deployed in the Siberian Lake Baikal, about 3.6 km from shore at a depth of 1.1 km. In April 1993 we put into operation the stationary 3-string detector NT-36, since April 1994 a modified version of NT-36 was taking data. An array carrying 72 PMTs has been deployed in March 1995. These arrays are steps towards the Neutrino Telescope NT-200 which will consist of 192 opti..
- …