4,067 research outputs found
X-ray Modeling of \eta\ Carinae and WR140 from SPH Simulations
The colliding wind binary (CWB) systems \eta\ Carinae and WR140 provide
unique laboratories for X-ray astrophysics. Their wind-wind collisions produce
hard X-rays that have been monitored extensively by several X-ray telescopes,
including RXTE. To interpret these RXTE X-ray light curves, we model the
wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations.
Adiabatic simulations that account for the absorption of X-rays from an assumed
point source at the apex of the wind-collision shock cone by the distorted
winds can closely match the observed 2-10keV RXTE light curves of both \eta\
Car and WR140. This point-source model can also explain the early recovery of
\eta\ Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4
reduction in the mass loss rate of \eta\ Car. Our more recent models relax the
point-source approximation and account for the spatially extended emission
along the wind-wind interaction shock front. For WR140, the computed X-ray
light curve again matches the RXTE observations quite well. But for \eta\ Car,
a hot, post-periastron bubble leads to an emission level that does not match
the extended X-ray minimum observed by RXTE. Initial results from incorporating
radiative cooling and radiatively-driven wind acceleration via a new
anti-gravity approach into the SPH code are also discussed.Comment: 5 pages, 3 figures, Proceedings of the 39th Li\'ege Astrophysical
Colloquium, held in Li\`ege 12-16 July 2010, edited by G. Rauw, M. De Becker,
Y. Naz\'e, J.-M. Vreux, P. William
An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas
A new method for continuous compositional-spread (CCS) thin-film fabrication
based on pulsed-laser deposition (PLD) is introduced. This approach is based on
a translation of the substrate heater and the synchronized firing of the
excimer laser, with the deposition occurring through a slit-shaped aperture.
Alloying is achieved during film growth (possible at elevated temperature) by
the repeated sequential deposition of sub-monolayer amounts. Our approach
overcomes serious shortcomings in previous in-situ implementations of CCS based
on sputtering or PLD, in particular the variations of thickness across the
compositional spread and the differing deposition energetics as function of
position. While moving-shutter techniques are appropriate for PLD-approaches
yielding complete spreads on small substrates (i.e. small as compared to
distances over which the deposition parameters in PLD vary, typically about 1
cm), our method can be used to fabricate samples that are large enough for
individual compositions to be analyzed by conventional techniques, including
temperature-dependent measurements of resistivity and dielectric and magnetic
and properties (i.e. SQUID magnetometry). Initial results are shown for spreads
of (Sr,Ca)RuO.Comment: 6 pages, 8 figures, accepted for publication in Rev. Sci. Instru
Viscous Effects on the Interaction between the Coplanar Decretion Disc and the Neutron Star in Be/X-Ray Binaries
We study the viscous effects on the interaction between the coplanar Be-star
disc and the neutron star in Be/X-ray binaries, using a three-dimensional,
smoothed particle hydrodynamics code. For simplicity, we assume the Be disc to
be isothermal at the temperature of half the stellar effective temperature. In
order to mimic the gas ejection process from the Be star, we inject particles
with the Keplerian rotation velocity at a radius just outside the star. Both Be
star and neutron star are treated as point masses. We find that the Be-star
disc is effectively truncated if the Shakura-Sunyaev viscosity parameter
alpha_SS >> 1, which confirms the previous semi-analytical result. In the
truncated disc, the material decreted from the Be star accumulates, so that the
disc becomes denser more rapidly than if around an isolated Be star. The
resonant truncation of the Be disc results in a significant reduction of the
amount of gas captured by the neutron star and a strong dependence of the mass
capture rate on the orbital phase. We also find that an eccentric mode is
excited in the Be disc through direct driving due to a one-armed bar potential
of the binary. The strength of the mode becomes greater in the case of a
smaller viscosity. In a high-resolution simulation with alpha_SS=0.1, the
eccentric mode is found to precess in a prograde sense. The mass capture rate
by the neutron star modulates as the mode precesses.Comment: 15 pages, including 20 figures and 1 table, accepted for publication
in MNRA
Photoemission study of the metal-insulator transition in VO_2/TiO_2(001) : Evidence for strong electron-electron and electron-phonon interaction
We have made a detailed temperature-dependent photoemission study of
VO_2/TiO_2(001) thin films, which show a metal-insulator transition at \sim 300
K. Clean surfaces were obtained by annealing the films in an oxygen atmosphere.
Spectral weight transfer between the coherent and incoherent parts accompanying
the metal-insulator transition was clearly observed. We also observed a
hysteretic behavior of the spectra for heating-cooling cycles. We have derived
the ``bulk'' spectrum of the metallic phase and found that it has a strong
incoherent part. The width of the coherent part is comparable to that given by
band-structure calculation in spite of its reduced spectral weight, indicating
that the momentum dependence of the self-energy is significant. This is
attributed to by ferromagnetic fluctuation arising from Hund's rule coupling
between different d orbitals as originally proposed by Zylbersztejn and Mott.
In the insulating phase, the width of the V 3d band shows strong temperature
dependence. We attribute this to electron-phonon interaction and have
reproduced it using the independent boson model with a very large coupling
constant.Comment: 7 pages, 7 figures, submitted to Phys. Rev.
Constraints on decreases in Eta Carinae's mass loss from 3D hydrodynamic simulations of its binary colliding winds
Recent work suggests that the mass-loss rate of the primary star (Eta A) in
the massive colliding wind binary Eta Carinae dropped by a factor of 2-3
between 1999 and 2010. We present results from large- (r=1545au) and small-
(r=155au) domain, 3D smoothed particle hydrodynamic (SPH) simulations of Eta
Car's colliding winds for 3 Eta A mass-loss rates (2.4, 4.8, and 8.5 x 10^-4
M_sun/yr), investigating the effects on the dynamics of the binary wind-wind
collision (WWC). These simulations include orbital motion, optically thin
radiative cooling, and radiative forces. We find that Eta A's mass-loss rate
greatly affects the time-dependent hydrodynamics at all spatial scales
investigated. The simulations also show that the post-shock wind of the
companion star (Eta B) switches from the adiabatic to the radiative-cooling
regime during periastron passage. The SPH simulations together with 1D
radiative transfer models of Eta A's spectra reveal that a factor of 2 or more
drop in Eta A's mass-loss rate should lead to substantial changes in numerous
multiwavelength observables. Recent observations are not fully consistent with
the model predictions, indicating that any drop in Eta A's mass-loss rate was
likely by a factor < 2 and occurred after 2004. We speculate that most of the
recent observed changes in Eta Car are due to a small increase in the WWC
opening angle that produces significant effects because our line-of-sight to
the system lies close to the dense walls of the WWC zone. A modest decrease in
Eta A's mass-loss rate may be responsible, but changes in the wind/stellar
parameters of Eta B cannot yet be fully ruled out. We suggest observations
during Eta Car's next periastron in 2014 to further test for decreases in Eta
A's mass-loss rate. If Eta A's mass-loss rate is declining and continues to do
so, the 2014 X-ray minimum should be even shorter than that of 2009.Comment: 38 pages, 25 figures, 1 table. Accepted for publication in MNRA
Optical evidence for symmetry changes above the Neel temperature in KCuF3
We report on optical measurements of the 1D Heisenberg antiferromagnet KCuF3.
The crystal-field excitations of the Cu2+ ions have been observed and their
temperature dependence can be understood in terms of magnetic and
exchange-induced dipole mechanisms and vibronic interactions. Above T_N we
observe a new temperature scale T_S characterized by the emergence of narrow
absorption features that correlate with changes of the orbital ordering as
observed by Paolasini et al. [Phys. Rev. Lett. 88, 106403 (2002)]. The
appearance of these optical transitions provides evidence for a symmetry change
above the Neel temperature that affects the orbital ordering and paves the way
for the antiferromagnetic ordering.Comment: 4 pages, 2 figure
Orbital Ordering in Paramagnetic LaMnO3 and KCuF3
{\it Ab-initio} studies of the stability of orbital ordering, its coupling to
magnetic structure and its possible origins (electron-phonon and/or
electron-electron interactions) are reported for two perovskite systems,
LaMnO and KCuF. We present a new Average Spin State (ASS) calculational
scheme that allowed us to treat a paramagnetic state. Using this scheme, we
succesfully described the experimental magnetic/orbital phase diagram of both
LaMnO and KCuF in crystal structures when the Jahn-Teller distortions
are neglected. Hence, we conclude that the orbital ordering in both compounds
is purely electronic in origin.Comment: 10 pages, 5 figure
Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit
The extremely massive (> 90 Solar Mass) and luminous (= 5 x 10(exp 6) Solar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the galaxy. However, many of its underlying physical parameters remain a mystery. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision in Eta Car, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-1) space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary
Perturbative Tamm-Dancoff Renormalization
A new two-step renormalization procedure is proposed. In the first step, the
effects of high-energy states are considered in the conventional (Feynman)
perturbation theory. In the second step, the coupling to many-body states is
eliminated by a similarity transformation. The resultant effective Hamiltonian
contains only interactions which do not change particle number. It is subject
to numerical diagonalization. We apply the general procedure to a simple
example for the purpose of illustration.Comment: 20 pages, RevTeX, 10 figure
Proximity to Fermi-surface topological change in superconducting LaO0.54F0.46BiS2
The electronic structure of nearly optimally-doped novel superconductor
LaOFBiS ( = 0.46) was investigated using
angle-resolved photoemission spectroscopy (ARPES). We clearly observed band
dispersions from 2 to 6 eV binding energy and near the Fermi level (), which are well reproduced by first principles calculations when
the spin-orbit coupling is taken into account. The ARPES intensity map near
shows a square-like distribution around the (Z) point
in addition to electronlike Fermi surface (FS) sheets around the X(R) point,
indicating that FS of LaOFBiS is in close proximity to
the theoretically-predicted topological change.Comment: 6 pages, 3 figures, + supplemental materia
- …