4,475 research outputs found
Multiple Andreev Reflections in Weak Links of Superfluid 3He-B
We calculate the current-pressure characteristics of a ballistic pinhole
aperture between two volumes of B-phase superfluid 3He. The most important
mechanism contributing to dissipative currents in weak links of this type is
the process of multiple Andreev reflections. At low biases this process is
significantly affected by relaxation due to inelastic
quasiparticle-quasiparticle collisions. In the numerical calculations,
suppression of the superfluid order parameter at surfaces is taken into account
self-consistently. When this effect is neglected, the theory may be developed
analytically like in the case of s-wave superconductors. A comparison with
experimental results is presented.Comment: 12 pages, 9 figures, RevTeX
Proximity Effect Enhancement Induced by Roughness of SN Interface
Critical temperature reduction is considered for a thin film of
a layered superconductor (S) with a rough surface covered by a thick layer of a
normal metal (N). The roughness of the SN interface increases the penetration
of electrons from the normal metal into the superconductor and leads to an
enhancement of the proximity effect. The value of induced by the
roughness of the SN interface can be much higher than for a film
with a plain surface for an extremely anisotropic layered superconductor with
the coherence lengths .Comment: 2 page
Quasiparticle states of the Hubbard model near the Fermi level
The spectra of the t-U and t-t'-U Hubbard models are investigated in the
one-loop approximation for different values of the electron filling. It is
shown that the four-band structure which is inherent in the case of
half-filling and low temperatures persists also for some excess or deficiency
of electrons. Besides, with some departure from half-filling an additional
narrow band of quasiparticle states arises near the Fermi level. The dispersion
of the band, its bandwidth and the variation with filling are close to those of
the spin-polaron band of the t-J model. For moderate doping spectral
intensities in the new band and in one of the inner bands of the four-band
structure decrease as the Fermi level is approached which leads to the
appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure
Semiclassical theory of weak antilocalization and spin relaxation in ballistic quantum dots
We develop a semiclassical theory for spin-dependent quantum transport in
ballistic quantum dots. The theory is based on the semiclassical Landauer
formula, that we generalize to include spin-orbit and Zeeman interaction.
Within this approach, the orbital degrees of freedom are treated
semiclassically, while the spin dynamics is computed quantum mechanically.
Employing this method, we calculate the quantum correction to the conductance
in quantum dots with Rashba and Dresselhaus spin-orbit interaction. We find a
strong sensitivity of the quantum correction to the underlying classical
dynamics of the system. In particular, a suppression of weak antilocalization
in integrable systems is observed. These results are attributed to the
qualitatively different types of spin relaxation in integrable and chaotic
quantum cavities.Comment: 20 page
Nonlinear resonance in a three-terminal carbon nanotube resonator
The RF-response of a three-terminal carbon nanotube resonator coupled to
RF-transmission lines is studied by means of perturbation theory and direct
numerical integration. We find three distinct oscillatory regimes, including
one regime capable of exhibiting very large hysteresis loops in the frequency
response. Considering a purely capacitive transduction, we derive a set of
algebraic equations which can be used to find the output power (S-parameters)
for a device connected to transmission lines with characteristic impedance
.Comment: 16 pages, 8 figure
Josephson effect in superconducting constrictions with hybrid SF electrodes: peculiar properties determined by the misorientation of magnetizations
Josephson current in SFcFS junctions with arbitrary transparency of the
constriction (c) is investigated. The emphasis is done on the analysis of the
supercurrent dependencies on the misorientation angle between the
in-plane magnetizations of diffusive ferromagnetic layers (F). It is found that
the current-phase relation may be radically modified with the variation: the harmonic vanishes for definite value of
provided for identical orientation of the magnetizations () the junction is in the state. The Josephson current may exhibit a
nonmonotonic dependence on the misorientation angle both for realization of and state at . We also analyze the effect of exchange
field induced enhancement of the critical current which may occur in definite
range of .Comment: 7 pages, 5 figures, submitted to JETP Letter
Superradiance from an ultrathin film of three-level V-type atoms: Interplay between splitting, quantum coherence and local-field effects
We carry out a theoretical study of the collective spontaneous emission
(superradiance) from an ultrathin film comprised of three-level atoms with
-configuration of the operating transitions. As the thickness of the system
is small compared to the emission wavelength inside the film, the local-field
correction to the averaged Maxwell field is relevant. We show that the
interplay between the low-frequency quantum coherence within the subspace of
the upper doublet states and the local-field correction may drastically affect
the branching ratio of the operating transitions. This effect may be used for
controlling the emission process by varying the doublet splitting and the
amount of low-frequency coherence.Comment: 15 pages, 5 figure
Anatomy of point-contact Andreev reflection spectroscopy from the experimental point of view (review)
We review application of point-contact Andreev-reflection spectroscopy to
study elemental superconductors, where theoretical conditions for the smallness
of the point-contact size with respect to the characteristic lengths in the
superconductor can be satisfied. We discuss existing theoretical models and
identify new issues that have to be solved, especially when applying this
method to investigate more complex superconductors. We will also demonstrate
that some aspects of point-contact Andreev-reflection spectroscopy still need
to be addressed even when investigating ordinary metals.Comment: 20 pages, 18 figs. V2: Ref.60 and footnote 3 are added, a number of
minor fixe
Non-equilibrium effects in a Josephson junction coupled to a precessing spin
We present a theoretical study of a Josephson junction consisting of two
s-wave superconducting leads coupled over a classical spin. When an external
magnetic field is applied, the classical spin will precess with the Larmor
frequency. This magnetically active interface results in a time-dependent
boundary condition with different tunneling amplitudes for spin-up and
spin-down quasiparticles and where the precession produces spin-flip scattering
processes. We show that as a result, the Andreev states develop sidebands and a
non-equilibrium population which depend on the precession frequency and the
angle between the classical spin and the external magnetic field. The Andreev
states lead to a steady-state Josephson current whose current-phase relation
could be used for characterizing the precessing spin. In addition to the charge
transport, a magnetization current is also generated.This spin current is
time-dependent and its polarization axis rotates with the same precession
frequency as the classical spin.Comment: 20 pages, 26 figure
- …