29 research outputs found

    Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice

    Get PDF
    Introduction High-fat diets (HFDs) are known to cause obesity and are associated with breast cancer progression and metastasis. Because obesity is associated with breast cancer progression, it is important to determine whether dietary fat per se stimulates breast cancer progression in the absence of obesity. This study investigated whether an HFD increases breast cancer growth and metastasis, as well as mortality, in obesity-resistant BALB/c mice. Methods The 4-week-old, female BALB/c mice were fed HFD (60% kcal fat) or control diet (CD, 10% kcal fat) for 16 weeks. Subsequently, 4T1 mammary carcinoma cells were injected into the inguinal mammary fat pads of mice fed continuously on their respective diets. Cell-cycle progression, angiogenesis, and immune cells in tumor tissues, proteases and adhesion molecules in the lungs, and serum cytokine levels were analyzed with immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay (ELISA). In vitro studies were also conducted to evaluate the effects of cytokines on 4T1 cell viability, migration, and adhesion. Results Spleen and gonadal fat-pad weights, tumor weight, the number and volume of tumor nodules in the lung and liver, and tumor-associated mortality were increased in the HFD group, with only slight increases in energy intake and body weight. HF feeding increased macrophage infiltration into adipose tissues, the number of lipid vacuoles and the expression of cyclin-dependent kinase (CDK)2, cyclin D1, cyclin A, Ki67, CD31, CD45, and CD68 in the tumor tissues, and elevated serum levels of complement fragment 5a (C5a), interleukin (IL)-16, macrophage colony-stimulating factor (M-CSF), soluble intercellular adhesion molecule (sICAM)-1, tissue inhibitors of metalloproteinase (TIMP)-1, leptin, and triggering receptor expressed on myeloid cells (TREM)-1. Protein levels of the urokinase-type plasminogen activator, ICAM-1, and vascular cell adhesion molecule-1 were increased, but plasminogen activator inhibitor-1 levels were decreased in the lungs of the HFD group. In vitro assays using 4T1 cells showed that sICAM-1 increased viability; TREM-1, TIMP-1, M-CSF, and sICAM-1 increased migration; and C5a, sICAM-1, IL-16, M-CSF, TIMP-1, and TREM-1 increased adhesion. Conclusions Dietary fat increases mammary tumor growth and metastasis, thereby increasing mortality in obesity-resistant mice

    Cryopreservation of adenovirus-transfected dendritic cells (DCs) for clinical use

    No full text
    In this study, we examined the effects of cryoprotectant, freezing and thawing, and adenovirus (Adv) transduction on the viability, transgene expression, phenotype, and function of human dendritic cells (DCs). DCs were differentiated from cultured peripheral blood (PB) monocytes following Elutra isolation using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 6 days and then transduced using an Adv vector with an IL-12 transgene. Fresh, cryopreserved, and thawed transduced immature DCs were examined for their: 1) cellular concentration and viability; 2) antigenicity using an allogeneic mixed lymphocyte reaction (MLR); 3) phenotype (HLA-DR and CD11c) and activation (CD83); and 4) transgene expression based on IL-12 secretion. Stability studies revealed that transduced DCs could be held in cryoprotectant for as long as 75 min at 2-8 degrees C prior to freezing with little effect on their viability and cellularity. Further, cryopreservation, storage, and thawing reduced the viability of the transduced DCs by an average of 7.7%; and had no significant impact on DC phenotype and activation. In summary, cryopreservation, storage, and thawing had no significant effect on DC viability, function, and transgene expression by Adv-transduced DCs. (C) 2012 Elsevier B.V. All rights reserved.Nebraska Research InitiativeThis research was funded through the Nebraska Research Initiative. None of the contributing authors has any financial conflict of interest
    corecore