72 research outputs found

    Possible magnetic-field-induced voltage and thermopower in diluted magnetic semiconductors

    Full text link
    In diluted magnetic semiconductors, the carrier concentration and the magnetization of local moments are strongly coupled, since the magnetic interaction is mediated by the carriers. It is predicted that this coupling leads to an electric polarization due to an applied magnetic-field gradient and to the appearance of a magnetic-field-dependent voltage. An expression for this voltage is derived within Landau theory and its magnitude is estimated for (Ga,Mn)As. Furthermore, a large contribution to the thermopower based on the same mechanism is predicted. The role of fluctuations is also discussed. These predictions hold both if the magnetization is uniform and if it shows stripe-like modulations, which are possible at lower temperatures.Comment: 6 pages revtex, 5 figure

    Frustration of the interlayer coupling by mobile holes in La2-xSrxCuO4 (x<0.02)

    Full text link
    We have studied the interlayer coupling in the antiferromagnetic (AF) phase of Sr and Zn doped La2CuO4 by analyzing the spin flip transition in the magnetization curves. We find that the interlayer coupling strongly depends on the mobility of the hole charge carriers. Samples with the same hole content as well as the same Neel temperature but a different hole mobility, which we adjusted by Zn co-doping, can have a very different interlayer coupling. Our results suggest that only mobile holes can cause a strong frustration of the interlayer coupling.Comment: 4 pages, 4 figure

    Self-compensation in manganese-doped ferromagnetic semiconductors

    Full text link
    We present a theory of interstitial Mn in Mn-doped ferromagnetic semiconductors. Using density-functional theory, we show that under the non-equilibrium conditions of growth, interstitial Mn is easily formed near the surface by a simple low-energy adsorption pathway. In GaAs, isolated interstitial Mn is an electron donor, each compensating two substitutional Mn acceptors. Within an impurity-band model, partial compensation promotes ferromagnetic order below the metal-insulator transition, with the highest Curie temperature occurring for 0.5 holes per substitutional Mn.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Ferromagnetic and random spin ordering in diluted magnetic semiconductors

    Full text link
    In a diluted magnetic semiconductor system, the exchange interaction between magnetic impurities has two independent components: a direct antiferromagnetic interaction and a ferromagnetic interaction mediated by charge carriers. Depending on the system parameters, the ground state of the system may be ordered either ferromagnetically or randomly. In this paper we use percolation theory to find the ferromagnetic transition temperature and the location of the quantum critical point separating the ferromagnetic phase and a valence bond glass phase.Comment: 9 pages, 2 figures, a reference adde

    One-step replica symmetry breaking solution for a highly asymmetric two-sublattice fermionic Ising spin glass model in a transverse field

    Full text link
    The one-step replica symmetry breaking (RSB) is used to study a two-sublattice fermionic infinite-range Ising spin glass (SG) model in a transverse field Γ\Gamma. The problem is formulated in a Grassmann path integral formalism within the static approximation. In this model, a parallel magnetic field HH breaks the symmetry of the sublattices. It destroys the antiferromagnetic (AF) order, but it can favor the nonergodic mixed phase (SG+AF) characterizing an asymmetric RSB region. In this region, intra-sublattice disordered interactions VV increase the difference between the RSB solutions of each sublattice. The freezing temperature shows a higher increase with HH when VV enhances. A discontinue phase transition from the replica symmetry (RS) solution to the RSB solution can appear with the presence of an intra-sublattice ferromagnetic average coupling. The Γ\Gamma field introduces a quantum spin flip mechanism that suppresses the magnetic orders leading them to quantum critical points. Results suggest that the quantum effects are not able to restore the RS solution. However, in the asymmetric RSB region, Γ\Gamma can produce a stable RS solution at any finite temperature for a particular sublattice while the other sublattice still presents RSB solution for the special case in which only the intra-sublattice spins couple with disordered interactions.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.

    Clustering in disordered ferromagnets: The Curie temperature in diluted magnetic semiconductors

    Full text link
    We theoretically investigate impurity correlation and magnetic clustering effects on the long-range ferromagnetic ordering in diluted magnetic semiconductors, such as Ga1−xMnxAs\textrm{Ga}_{1-x}\textrm{Mn}_{x}\textrm{As}, using analytical arguments and direct Monte Carlo simulations. We obtain an analytic formula for the ferromagnetic transition temperature TcT_{c} which becomes asymptotically exact in the strongly disordered, highly dilute (i.e. small xx) regime. We establish that impurity correlations have only small effects on TcT_{c} with the neutrally correlated random disorder producing the nominally highest TcT_{c}. We find that the ferromagnetic order is approached from the high temperature paramagnetic side through a random magnetic clustering phenomenon consistent with the percolation transition scenario.Comment: 5 pages, 4 figure

    Griffiths phase in diluted magnetic semiconductors

    Full text link
    We study the effects of disorder in the vicinity of the ferromagnetic transition in a diluted magnetic semiconductor in the strongly localized regime. We derive an effective polaron Hamiltonian, which leads to the Griffiths phase above the ferromagnetic transition point. The Griffiths-McCoy effects yield non-perturbative contributions to the dynamic susceptibility. We explicitly derive the long-time susceptibility, which has a pseudo-scaling form, with the dynamic critical exponent being expressed through the percolation indices.Comment: 4 pages, final version as publishe

    Polaron percolation in diluted magnetic semiconductors

    Full text link
    We theoretically study the development of spontaneous magnetization in diluted magnetic semiconductors as arising from a percolation of bound magnetic polarons. Within the framework of a generalized percolation theory we derive analytic expressions for the Curie temperature and the magnetization, obtaining excellent quantitative agreement with Monte Carlo simulation results and good qualitative agreement with experimental results.Comment: 5 page

    Compressible Sherrington-Kirkpatrick spin-glass model

    Full text link
    We introduce a Sherrington-Kirkpatrick spin-glass model with the addition of elastic degrees of freedom. The problem is formulated in terms of an effective four-spin Hamiltonian in the pressure ensemble, which can be treated by the replica method. In the replica-symmetric approximation, we analyze the pressure-temperature phase diagram, and obtain expressions for the critical boundaries between the disordered and the ordered (spin-glass and ferromagnetic) phases. The second-order para-ferromagnetic border ends at a tricritical point, beyond which the transition becomes discontinuous. We use these results to make contact with the temperature-concentration phase diagrams of mixtures of hydrogen-bonded crystals.Comment: 8 pages, 2 figures; added references, added conten
    • …
    corecore