648 research outputs found

    Spin-polarized electric currents in quantum transport through tubular two-dimensional electron gases

    Full text link
    Scattering theory is employed to derive a Landauer-type formula for the spin and the charge currents, through a finite region where spin-orbit interactions are effective. It is shown that the transmission matrix yields the spatial direction and the magnitude of the spin polarization. This formula is used to study the currents through a tubular two-dimensional electron gas. In this cylindrical geometry, which may be realized in experiment, the transverse conduction channels are not mixed (provided that the spin-orbit coupling is uniform). It is then found that for modest boundary scattering, each step in the quantized conductance is split into two, and the new steps have a non-zero spin conductance, with the spin polarization perpendicular to the direction of the current.Comment: 6 pages, 5 figure

    Spin orbit coupling in bulk ZnO and GaN

    Full text link
    Using group theory and Kane-like k⋅p\mathbf{k\cdot p} model together with the L\"owdining partition method, we derive the expressions of spin-orbit coupling of electrons and holes, including the linear-kk Rashba term due to the intrinsic structure inversion asymmetry and the cubic-kk Dresselhaus term due to the bulk inversion asymmetry in wurtzite semiconductors. The coefficients of the electron and hole Dresselhaus terms of ZnO and GaN in wurtzite structure and GaN in zinc-blende structure are calculated using the nearest-neighbor sp3sp^3 and sp3s∗sp^3s^\ast tight-binding models separately.Comment: 9 pages, 6 figures, to be published in J. Appl. Phy

    Efficient electron spin manipulation in a quantum well by an in-plane electric field

    Full text link
    Electron spins in a semiconductor quantum well couple to an electric field {\it via} spin-orbit interaction. We show that the standard spin-orbit coupling mechanisms can provide extraordinary efficient electron spin manipulation by an in-plane ac electric field

    Quasi-Ferromagnet Spintronics in Graphene Nanodisk-Lead System

    Full text link
    A zigzag graphene nanodisk can be interpreted as a quantum dot with an internal degree of freedom. It is well described by the infinite-range Heisenberg model. We have investigated its thermodynamical properties. There exists a quasi-phase transition between the quasi-ferromagnet and quasi-paramagnet states, as signaled by a sharp peak in the specific heat and in the susceptability. We have also analyzed how thermodynamical properties are affected when two leads are attached to the nanodisk. It is shown that lead effects are described by the many-spin Kondo Hamiltonian. There appears a new peak in the specific heat, and the multiplicity of the ground state becomes just one half of the system without leads. Another lead effect is to enhance the ferromagnetic order. Being a ferromagnet, a nanodisk can be used as a spin filter. Furthermore, since the relaxation time is finite, it is possible to control the spin of the nanodisk by an external spin current. We then propose a rich variety of spintronic devices made of nanodisks and leads, such as spin memory, spin amplifier, spin valve, spin-field-effect transistor, spin diode and spin logic gates such as spin-XNOR gate and spin-XOR gate. Graphene nanodisks could well be basic components of future nanoelectronic and spintronic devices.Comment: 12 pages, 13 figures, invited paper to "focus on graphene

    The effect of in-plane magnetic field on the spin Hall effect in Rashba-Dresselhaus system

    Full text link
    In a two-dimensional electron gas with Rashba and Dresselhaus spin-orbit couplings, there are two spin-split energy surfaces connected with a degenerate point. Both the energy surfaces and the topology of the Fermi surfaces can be varied by an in-plane magnetic field. We find that, if the chemical potential falls between the bottom of the upper band and the degenerate point, then simply by changing the direction of the magnetic field, the magnitude of the spin Hall conductivity can be varied by about 100 percent. Once the chemical potential is above the degenerate point, the spin Hall conductivity becomes the constant e/8Ï€e/8\pi, independent of the magnitude and direction of the magnetic field. In addition, we find that the in-plane magnetic field exerts no influence on the charge Hall conductivity.Comment: 11 pages, 3 figures, to be published on Phys. Rev.

    Evanescent states in 2D electron systems with spin-orbit interaction and spin-dependent transmission through a barrier

    Full text link
    We find that the total spectrum of electron states in a bounded 2D electron gas with spin-orbit interaction contains two types of evanescent states lying in different energy ranges. The first-type states fill in a gap, which opens in the band of propagating spin-splitted states if tangential momentum is nonzero. They are described by a pure imaginary wavevector. The states of second type lie in the forbidden band. They are described by a complex wavevector. These states give rise to unusual features of the electron transmission through a lateral potential barrier with spin-orbit interaction, such as an oscillatory dependence of the tunneling coefficient on the barrier width and electron energy. But of most interest is the spin polarization of an unpolarized incident electron flow. Particularly, the transmitted electron current acquires spin polarization even if the distribution function of incident electrons is symmetric with respect to the transverse momentum. The polarization efficiency is an oscillatory function of the barrier width. Spin filtering is most effective, if the Fermi energy is close to the barrier height.Comment: 9 pages, 9 figures, more general boundary conditions are used, typos correcte

    Extra Current and Integer Quantum Hall Conductance in the Spin-Orbit Coupling System

    Full text link
    We study the extra term of particle current in a 2D k-cubic Rashba spin-orbit coupling system and the integer quantization of the Hall conductance in this system. We provide a correct formula of charge current in this system and the careful consideration of extra currents provides a stronger theoretical basis for the theory of the quantum Hall effect which has not been considered before. The non-trivial extra contribution to the particle current density and local conductivity, which originates from the cubic dependence on the momentum operator in the Hamiltonian, will have no effect on the integer quantization of the Hall conductance. The extension of Noether's theorem for the 2D k-cubic Rashba system is also addressed. The two methods reach to exactly the same results.Comment: 6 page

    Radial Spin Helix in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling

    Full text link
    We suggest a long-lived spin polarization structure, a radial spin helix, and study its relaxation dynamics. For this purpose, starting with a simple and physically clear consideration of spin transport, we derive a system of equations for spin polarization density and find its general solution in the axially symmetric case. It is demonstrated that the radial spin helix of a certain period relaxes slower than homogeneous spin polarization and plain spin helix. Importantly, the spin polarization at the center of the radial spin helix stays almost unchanged at short times. At longer times, when the initial non-exponential relaxation region ends, the relaxation of the radial spin helix occurs with the same time constant as that describing the relaxation of the plain spin helix.Comment: 9 pages, 7 figure

    Two-dimensional magnetoexcitons in the presence of spin-orbit coupling

    Full text link
    We study theoretically the effect of spin-orbit coupling on quantum well excitons in a strong magnetic field. We show that, in the presence of an in-plane field component, the excitonic absorption spectrum develops a double-peak structure due to hybridization of bright and dark magnetoexcitons. If the Rashba and Dresselhaus spin-orbit constants are comparable, the magnitude of splitting can be tuned in a wide interval by varying the azimuthal angle of the in-plane field. We also show that the interplay between spin-orbit and Coulomb interactions leads to an anisotropy of exciton energy dispersion in the momentum plane. The results suggest a way for direct optical measurements of spin-orbit parameters.Comment: 9 pages, 6 figure

    Spin states and persistent currents in a mesoscopic ring with an embedded magnetic impurity

    Full text link
    Spin states and persistent currents are investigated theoretically in a mesoscopic ring with an embedded magnetic ion under a uniform magnetic field including the spin-orbit interactions. The magnetic impurity acts as a spin-dependent δ\delta-potential for electrons and results in gaps in the energy spectrum, consequently suppresses the oscillation of the persistent currents. The competition between the Zeeman splittings and the ss-dd exchange interaction leads to a transition of the electron ground state in the ring. The interplay between the periodic potential induced by the Rashba and Dresselhaus spin-orbit interactions and the δ\delta-potential induced by the magnetic impurity leads to significant variation in the energy spectrum, charge density distribution, and persistent currents of electrons in the ring.Comment: 8 pages, 11 figure
    • …
    corecore