399 research outputs found

    Orthorhombically Mixed s and dx2−y2_{x^2-y^2} Wave Superconductivity and Josephson Tunneling

    Full text link
    The effect of orthorhombicity on Josephson tunneling in high Tc_c superconductors such as YBCO is studied for both single crystals and highly twinned crystals. It is shown that experiments on highly twinned crystals experimentally determine the symmetry of the superconducting twin boundaries (which can be either even or odd with respect to a reflection in the twinning plane). Conversely, Josephson experiments on highly twinned crystals can not experimentally determine whether the superconductivity is predominantly ss-wave or predominantly dd-wave. The direct experimental determination of the order-parameter symmetry by Josephson tunneling in YBCO thus comes from the relatively few experiments which have been carried out on untwinned single crystals.Comment: 5 pages, RevTeX file, 1 figure available on request ([email protected]

    "Chain scenario" for Josephson tunneling with pi-shift in YBa2Cu3O7

    Full text link
    We point out that all current Josephson-junction experiments probing directly the symmetry of the superconducting state in YBa2Cu3O7, can be interpreted in terms of the bilayer antiferromagnetic spin fluctuation model, which renders the superconducting state with the order parameters of extended ss symmetry, but with the opposite signs in the bonding and antibonding Cu-O plane bands. The essential part of our interpretation includes the Cu-O chain band which would have the order parameter of the same sign as antibonding plane band. We show that in this case net Josephson currents along and perpendicular to the chains have the phase shift equal to pi.Comment: 4 pages, revtex, 1 figure uuencoded (POSTSCRIPT figure replaced - the previous file did not print Greek letters correctly

    Asymmetric magnetic interference patterns in 0-pi Josephson junctions

    Full text link
    We examine the magnetic interference patterns of Josephson junctions with a region of 0- and of pi-phase shift. Such junctions have recently been realized as c-axis YBCO-Pb junctions with a single twin boundary in YBCO. We show that in general the junction generates self-fields which introduces an asymmetry in the critical current under reversal of the magnetic field. Numerical calculations of these asymmetries indicate they account well for the unexplained features observed in single twin boundary junctions.Comment: 4 pages, 3 figure

    Ground state properties and dynamics of the bilayer t-J model

    Full text link
    We present an exact diagonalization study of bilayer clusters of t-J model. Our results indicate a crossover between two markedly different regimes which occurs when the ratio J_perp/J between inter-layer and intra-layer exchange constants increases: for small J_perp/J the data suggest the development of 3D antiferromagnetic correlations without appreciable degradation of the intra-layer spin order and the d_(x2-y2) hole pairs within the planes persist. For larger values of J_perp/J local singlets along the inter-layer bonds dominate, leading to an almost complete suppression of the intra-layer spin correlation and the breaking of the intra-layer pairs. The ground state with two holes in this regime has s-like symmetry. The data suggest that the crossover may occur for values of J_perp/J as small as 0.2. We present data for static spin correlations, spin gap, and electron momentum distribution and spectral function of the `inter-layer RVB state' realized for large J_perp/J. The latter deviates from the single layer ground state, making it an implausible candidate for modelling high-temperature superconductors.Comment: Revtex-file, 6 PRB pages, figures appended as uu-encoded postscript. Hardcopies of figures (or the entire manuscript) can be obtained by e-mailing to: [email protected]

    Macroscopic Symmetry Group Describes Josephson Tunneling in Twinned Crystals

    Full text link
    A macroscopic symmetry group describing the superconducting state of an orthorhombically twinned crystal of YBCO is introduced. This macroscopic symmetry group is different for different symmetries of twin boundaries. Josephson tunneling experiments performed on twinned crystals of YBCO determine this macroscopic symmetry group and hence determine the twin boundary symmetry (but do not experimentally determine whether the microscopic order parameter is primarily d- or s-wave). A consequence of the odd-symmetry twin boundaries in YBCO is the stability of vortices containing one half an elementary flux quantum at the intersection of a twin boundary and certain grain boundaries.Comment: 6 pages, to be published in the Proceedings of the MOS96 Conference in the Journal of Low Temperature Physic

    d-like Symmetry of the Order Parameter and Intrinsic Josephson Effects in Bi2212 Cross-Whisker Junctions

    Full text link
    An intrinsic tunnel junction was made using two Bi-2212 single crystal whiskers. The two whiskers with a cross-angle were overlaid at their c-planes and connected by annealing. The angular dependence of the critical current density along the c-axis is of the d-wave symmetry. However, the angular dependence is much stronger than that of the conventional d-wave. Furthermore, the current vs. voltage characteristics of the cross-whiskers junctions show a multiple-branch structure at any cross-angle, indicating the formation of the intrinsic Josephson junction array.Comment: 4 pages PDF fil

    s-wave superconductivity from antiferromagnetic spin-fluctuation model for bilayer materials

    Full text link
    It is usually believed that the spin-fluctuation mechanism for high-temperature superconductivity results in d-wave pairing, and that it is destructive for the conventional phonon-mediated pairing. We show that in bilayer materials, due to nearly perfect antiferromagnetic spin correlations between the planes, the stronger instability is with respect to a superconducting state whose order parameters in the even and odd plane-bands have opposite signs, while having both two-dimensional ss-symmetry. The interaction of electrons with Raman- (infrared-) active phonons enhances (suppresses) the instability.Comment: Revtex, 3 figure

    Induction of non-d-wave order-parameter components by currents in d-wave superconductors

    Full text link
    It is shown, within the framework of the Ginzburg-Landau theory for a superconductor with d_{x^2-y^2} symmetry, that the passing of a supercurrent through the sample results, in general, in the induction of order-parameter components of distinct symmetry. The induction of s-wave and d_{xy(x^2-y^2)-wave components are considered in detail. It is shown that in both cases the order parameter remains gapless; however, the structure of the lines of nodes and the lobes of the order parameter are modified in distinct ways, and the magnitudes of these modifications differ in their dependence on the (a-b plane) current direction. The magnitude of the induced s-wave component is estimated using the results of the calculations of Ren et al. [Phys. Rev. Lett. 74, 3680 (1995)], which are based on a microscopic approach.Comment: 15 pages, includes 2 figures. To appear in Phys. Rev.

    On the Bloch Theorem Concerning Spontaneous Electric Current

    Full text link
    We study the Bloch theorem which states absence of the spontaneous current in interacting electron systems. This theorem is shown to be still applicable to the system with the magnetic field induced by the electric current. Application to the spontaneous surface current is also examined in detail. Our result excludes the possibility of the recently proposed dd-wave superconductivity having the surface flow and finite total current.Comment: 12 pages, LaTeX, 3 Postscript figure
    • …
    corecore