3,867 research outputs found
Demonstration project: Putting the bioastronautics data book on line
The possibilities for prototyping electronic document designs using existing microcomputer software are considered. An initial prototype of a hierarchically structured design that includes both text and graphics from a section of the Bioastronautics Data Book are considered
Co-invariants of Lie algebras of vector fields on algebraic varieties
We prove that the space of coinvariants of functions on an affine variety by a Lie algebra of vector fields whose flow generates finitely many leaves is finite-dimensional. Cases of the theorem include Poisson (or more generally Jacobi) varieties with finitely many symplectic leaves under Hamiltonian flow, complete intersections in Calabi-Yau varieties with isolated singularities under the flow of incompressible vector fields, quotients of Calabi-Yau varieties by finite volume-preserving groups under the incompressible vector fields, and arbitrary varieties with isolated singularities under the flow of all vector fields. We compute this quotient explicitly in many of these cases. The proofs involve constructing a natural D-module representing the invariants under the flow of the vector fields, which we prove is holonomic if it has finitely many leaves (and whose holonomicity we study in more detail). We give many counterexamples to naive generalizations of our results. These examples have been a source of motivation for us. Keywords: Lie algebras; D-modules; Poisson homology; Poisson varieties; Calabi–Yau varieties; Jacobi varietie
Invariants of Hamiltonian flow on locally complete intersections
We consider the Hamiltonian flow on complex complete intersection surfaces with isolated singularities, equipped with the Jacobian Poisson structure. More generally we consider complete intersections of arbitrary dimension equipped with Hamiltonian flow with respect to the natural top polyvector field, which one should view as a degenerate Calabi–Yau structure. Our main result computes the coinvariants of functions under the Hamiltonian flow. In the surface case this is the zeroth Poisson homology, and our result generalizes those of Greuel, Alev and Lambre, and the authors in the quasihomogeneous and formal cases. Its dimension is the sum of the dimension of the top cohomology and the sum of the Milnor numbers of the singularities. In other words, this equals the dimension of the top cohomology of a smoothing of the variety. More generally, we compute the derived coinvariants, which replaces the top cohomology by all of the cohomology. Still more generally we compute the D-module which represents all invariants under Hamiltonian flow, which is a nontrivial extension (on both sides) of the intersection cohomology D-module, which is maximal on the bottom but not on the top. For cones over smooth curves of genus g, the extension on the top is the holomorphic half of the maximal extension.National Science Foundation (U.S.) (Grant DMS-1000113
Online LZ77 Parsing and Matching Statistics with RLBWTs
Lempel-Ziv 1977 (LZ77) parsing, matching statistics and the Burrows-Wheeler Transform (BWT) are all fundamental elements of stringology. In a series of recent papers, Policriti and Prezza (DCC 2016 and Algorithmica, CPM 2017) showed how we can use an augmented run-length compressed BWT (RLBWT) of the reverse T^R of a text T, to compute offline the LZ77 parse of T in O(n log r) time and O(r) space, where n is the length of T and r is the number of runs in the BWT of T^R. In this paper we first extend a well-known technique for updating an unaugmented RLBWT when a character is prepended to a text, to work with Policriti and Prezza\u27s augmented RLBWT. This immediately implies that we can build online the LZ77 parse of T while still using O(n log r) time and O(r) space; it also seems likely to be of independent interest. Our experiments, using an extension of Ohno, Takabatake, I and Sakamoto\u27s (IWOCA 2017) implementation of updating, show our approach is both time- and space-efficient for repetitive strings. We then show how to augment the RLBWT further - albeit making it static again and increasing its space by a factor proportional to the size of the alphabet - such that later, given another string S and O(log log n)-time random access to T, we can compute the matching statistics of S with respect to T in O(|S| log log n) time
Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases
The emission of greenhouse gases (GHGs) has changed the composition of the atmosphere during the Anthropocene. Accurately documenting the sources and magnitude of GHGs emission is an important undertaking for discriminating the contributions of different processes to radiative forcing. Currently there is no mobile platform that is able to quantify trace gases at altitudes(UASs) can be deployed on-site in minutes and can support the payloads necessary to quantify trace gases. Therefore, current efforts combine the use of UASs available on the civilian market with inexpensively designed analytical systems for monitoring atmospheric trace gases. In this context, this perspective introduces the most relevant classes of UASs available and evaluates their suitability to operate three kinds of detectors for atmospheric trace gases. The three subsets of UASs discussed are: (1) micro aerial vehicles (MAVs); (2) vertical take-off and landing (VTOL); and, (3) low-altitude short endurance (LASE) systems. The trace gas detectors evaluated are first the vertical cavity surface emitting laser (VCSEL), which is an infrared laser-absorption technique; second two types of metal-oxide semiconductor sensors; and, third a modified catalytic type sensor. UASs with wingspans under 3 m that can carry up to 5 kg a few hundred meters high for at least 30 min provide the best cost and convenience compromise for sensors deployment. Future efforts should be focused on the calibration and validation of lightweight analytical systems mounted on UASs for quantifying trace atmospheric gases. In conclusion, UASs offer new and exciting opportunities to study atmospheric composition and its effect on weather patterns and climate change
Retrieval of Volcanic and Man-Made Stratospheric Aerosols from Orbital Polarimetric Measurements
Stratospheric aerosols that are caused by a major volcanic eruption can serve as a valuable test of global climate models, as well as severely complicate tropospheric-aerosol monitoring from space. In either case, it is highly desirable to have accurate global information on the optical thickness, size, and composition of volcanic aerosols. We report sensitivity study results, which analyze the implications of making precise multi-angle photopolarimetric measurements in a 1.378-m spectral channel residing within a strong water-vapor absorption band. We demonstrate that, under favorable conditions, such measurements would enable near-perfect retrievals of the optical thickness, effective radius, and refractive index of stratospheric aerosols. Besides enabling accurate retrievals of volcanic aerosols, such measurements can also be used to monitor man-made particulates injected in the stratosphere for geoengineering purposes
- …