348 research outputs found
Non-equilibrium Berezinskii-Kosterlitz-Thouless Transition in a Driven Open Quantum System
The Berezinskii-Kosterlitz-Thouless mechanism, in which a phase transition is
mediated by the proliferation of topological defects, governs the critical
behaviour of a wide range of equilibrium two-dimensional systems with a
continuous symmetry, ranging from superconducting thin films to two-dimensional
Bose fluids, such as liquid helium and ultracold atoms. We show here that this
phenomenon is not restricted to thermal equilibrium, rather it survives more
generally in a dissipative highly non-equilibrium system driven into a
steady-state. By considering a light-matter superfluid of polaritons, in the
so-called optical parametric oscillator regime, we demonstrate that it indeed
undergoes a vortex binding-unbinding phase transition. Yet, the exponent of the
power-law decay of the first order correlation function in the (algebraically)
ordered phase can exceed the equilibrium upper limit -- a surprising
occurrence, which has also been observed in a recent experiment. Thus we
demonstrate that the ordered phase is somehow more robust against the quantum
fluctuations of driven systems than thermal ones in equilibrium.Comment: 11 pages, 9 figure
Non-equilibrium berezinskii-kosterlitz-thouless transition in driven-dissipative condensate
We study the two-dimensional phase transition of a driven-dissipative system of exciton-polaritons under non-resonant pumping. Stochastic calculations are used to investigate the Berezinskii-Kosterlitz-Thouless–like phase diagram for experimentally realistic parameters, with a special attention to the non-equilibrium features
Voltage controlled nuclear polarization switching in a single InGaAs quantum dot
Sharp threshold-like transitions between two stable nuclear spin
polarizations are observed in optically pumped individual InGaAs self-assembled
quantum dots embedded in a Schottky diode when the bias applied to the diode is
tuned. The abrupt transitions lead to the switching of the Overhauser field in
the dot by up to 3 Tesla. The bias-dependent photoluminescence measurements
reveal the importance of the electron-tunneling-assisted nuclear spin pumping.
We also find evidence for the resonant LO-phonon-mediated electron
co-tunneling, the effect controlled by the applied bias and leading to the
reduction of the nuclear spin pumping rate.Comment: 5 pages, 2 figures, submitted to Phys Rev
Overhauser effect in individual InP/GaInP dots
Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a
wide range of external magnetic fields B_ext=0-5T by circularly polarized
optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T
and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of
the nuclear spin on the spin pumping efficiency. This feedback, produced by the
Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of
Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when
the Overhauser field cancels the external field. This counter-intuitive result
is shown to arise from the opposite contribution of the electron and hole
Zeeman splittings to the total exciton Zeeman energy
Overhauser effect in individual InP/GaInP dots
Sizable nuclear spin polarization is pumped in individual InP/GaInP dots in a
wide range of external magnetic fields B_ext=0-5T by circularly polarized
optical excitation. We observe nuclear polarization of up to ~40% at Bext=1.5T
and corresponding to an Overhauser field of ~1.2T. We find a strong feedback of
the nuclear spin on the spin pumping efficiency. This feedback, produced by the
Overhauser field, leads to nuclear spin bi-stability at low magnetic fields of
Bext=0.5-1.5T. We find that the exciton Zeeman energy increases markedly, when
the Overhauser field cancels the external field. This counter-intuitive result
is shown to arise from the opposite contribution of the electron and hole
Zeeman splittings to the total exciton Zeeman energy
Non-equilibrium Berezinskii-Kosterlitz-Thouless transition in driven-dissipative condensates
We study the 2d phase transition of a driven-dissipative system of
exciton-polaritons under non-resonant pumping. Stochastic calculations are used
to investigate the Berezinskii-Kosterlitz-Thouless-like phase diagram for
experimentally realistic parameters, with a special attention to the
non-equilibrium features.Comment: 8 pages, 5 figures, plus supplementary information
Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe
Nuclear spin polarization dynamics are measured in optically pumped
individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence
of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear
polarization decay times of ~ 1 minute have been found indicating inefficient
nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in
externally applied magnetic field. A spin diffusion coefficient two orders
lower than that previously found in bulk GaAs is deduced.Comment: 5 pages, 3 figures, submitted to Phys Rev
Kibble-Zurek mechanism in driven-dissipative systems crossing a non-equilibrium phase transition
The Kibble-Zurek mechanism constitutes one of the most fascinating and
universal phenomena in the physics of critical systems. It describes the
formation of domains and the spontaneous nucleation of topological defects when
a system is driven across a phase transition exhibiting spontaneous symmetry
breaking. While a characteristic dependence of the defect density on the speed
at which the transition is crossed was observed in a vast range of equilibrium
condensed matter systems, its extension to intrinsically driven-dissipative
systems is a matter of ongoing research. In this work we numerically confirm
the Kibble-Zurek mechanism in a paradigmatic family of driven-dissipative
quantum systems, namely exciton-polaritons in microcavities. Our findings show
how the concepts of universality and critical dynamics extend to
driven-dissipative systems that do not conserve energy or particle number nor
satisfy a detailed balance condition
Ramsey interference in a multilevel quantum system
We report Ramsey interference in the excitonic population of a negatively charged quantum dot measured in resonant fluorescence. Our experiments show that the decay time of the Ramsey interference is limited by the spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be addressed by changing the laser detuning to reveal two-, three-, and four-level system behavior. We show that under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both population and spin states simultaneously. We also demonstrate the coherent optical manipulation of a trapped spin in a quantum dot in a Faraday geometry magnetic field
- …