3 research outputs found

    Two-loop Radiative Neutrino Mechanism in an SU(3)L×U(1)NSU(3)_L\times U(1)_N Gauge Model

    Full text link
    By using the LeL_e - LμL_\mu - LτL_\tau symmetry, we construct an SU(3)L×U(1)NSU(3)_L\times U(1)_N gauge model that provides two-loop radiative neutrino masses as well as one-loop radiative neutrino masses. The generic smallness of two-loop neutrino masses leading to Δm⊙2\Delta m^2_\odot compared with one-loop neutrino masses leading to Δmatm2\Delta m^2_{atm} successfully explains Δmatm2\Delta m^2_{atm} >>>> Δm⊙2\Delta m^2_{\odot} by invoking the LeL_e - LμL_\mu - LτL_\tau breaking. The Higgs scalar (h+h^+) that initiates radiative mechanisms is unified into a Higgs triplet together with the standard Higgs scalar (ϕ+\phi^+, ϕ0\phi^0) to form (ϕ+\phi^+, ϕ0\phi^0, h+h^+), which calls for three families of lepton triplets: (νLi\nu^i_L, ℓLi\ell^i_L, ωLi\omega^i_L) (i = 1,2,3), where ωi\omega^i denote heavy neutral leptons. The two-loop radiative mechanism is found possible by introducing a singly charged scalar, which couples to ℓRiωRj\ell^i_R\omega^j_R (i,j = 2,3).Comment: with 10 pages, revtex, including 2 figures, accepted for publication in Phys. Rev. D (with undefined latex citation indices removed

    Radiatively Induced Neutrino Masses and Oscillations in an SU(3)_LxU(1)_N Gauge Model

    Get PDF
    We have constructed an SU(3)L×U(1)NSU(3)_L \times U(1)_N gauge model utilizing an U(1)L′U(1)_{L^\prime} symmetry, where L′L^\prime = Le−Lμ−LτL_e-L_\mu-L_\tau, which accommodates tiny neutrino masses generated by L′L^\prime-conserving one-loop and L′L^\prime-breaking two-loop radiative mechanisms. The generic smallness of two-loop radiative effects compared with one-loop radiative effects describes the observed hierarchy of Δmatm2\Delta m_{atm}^2 ≫\gg Δm⊙2\Delta m_\odot^2. A key ingredient for radiative mechanisms is a charged scalar (h+h^+) that couples to charged lepton-neutrino pairs and h+h^+ together with the standard Higgs scalar (ϕ\phi) can be unified into a Higgs triplet as (ϕ0\phi^0, ϕ−\phi^-, h+h^+)T^T. This assignment in turn requires lepton triplets (ψLi\psi_L^i) with heavy charged leptons (κL+i\kappa_L^{+i}) as the third member: ψLi=(νLi,ℓLi,κL+i)T\psi_L^i=(\nu^i_L,\ell^i_L,\kappa^{+i}_L)^T, where ii (=1,2,3=1,2,3) denotes three families. It is found that our model is relevant to yield quasi-vacuum oscillations for solar neutrinos.Comment: 11 pages, revtex, including 2 figures, accepted for publication in Phys. Rev. D with minor modification of our resul

    Bilarge Neutrino Mixing and \mu - \tau Permutation Symmetry for Two-loop Radiative Mechanism

    Full text link
    The presence of approximate electron number conservation and \mu-\tau permutation symmetry of S_2 is shown to naturally provide bilarge neutrino mixing. First, the bimaximal neutrino mixing together with U_{e3}=0 is guaranteed to appear owing to S_2 and, then, the bilarge neutrino mixing together with |U_{e3}|<<1 arises as a result of tiny violation of S_2. The observed mass hierarchy of \Delta m^2_{\odot}<<\Delta m^2_{atm} is subject to another tiny violation of the electron number conservation. This scenario is realized in a specific model based on SU(3)_L x U(1)_N with two-loop radiative mechanism for neutrino masses. The radiative effects from heavy leptons contained in lepton triplets generate the bimaximal structure and those from charged leptons, which break S_2, generate the bilarge structure together with |U_{e3}|<<1. To suppress dangerous flavor-changing neutral current interactions due to Higgs exchanges especially for quarks, this S_2 symmetry is extended to a discrete Z_8 symmetry, which also ensures the absence of one-loop radiative mechanism.Comment: 18 pages, 7 figures, to appear in Phys. Rev.
    corecore