1,347 research outputs found

    Experiments with phase transitions at very high pressure

    Get PDF
    Diamond cells were constructed for use to 1 Mbar. A refrigerator for cooling diamond cells was adapted for studies between 15 and 300 K. A cryostat for superconductivity studies between 1.5 to 300 K was constructed. Optical equipment was constructed for fluorescence, transmission, and reflectance studies. X-ray equipment was adapted for use with diamond cells. Experimental techniques were developed for X-ray diffraction studies using synchrotron radiation. AC susceptibility techniques were developed for detecting superconducting transitions. The following materials were studied: compressed solidified gases (Xe, Ar), semiconductors (Ge, Si, GaAs), superconductors (Nb3Ge, Nb3Si, Nb3As, CuCl), molecular crystals (I)

    Magnetometer uses bismuth-selenide

    Get PDF
    Characteristics of bismuth-selenide magnetometer are described. Advantages of bismuth-selenide magnetometer over standard magnetometers are stressed. Thermal stability of bismuth-selenide magnetometer is analyzed. Linearity of output versus magnetic field over wide range of temperatures is reported

    Hall effect magnetometer

    Get PDF
    A magnetometer which uses a single crystal of bismuth selenide is described. The rhombohedral crystal structure of the sensing element is analyzed. The method of construction of the magnetometer is discussed. It is stated that the sensing crystal has a positive or negative Hall coefficient and a carrier concentration of about 10 to the 18th power to 10 to the 20th power per cubic centimeter

    Properties of crystalline bismuth selenide and its use as a Hall effect magnetometer

    Get PDF
    Single crystals of n-type Bi2Se3 grown by the Bridgman technique are found to make excellent Hall effect magnetometers. Plots of Hall resistivity sub yx against magnetic field B to 10 tesla are linear to within 1 percent. Furthermore, the slope of the sub yx against B curve varies by about 1 percent in the region 1.1 to 35 K and by less than 20 percent in the region 1.1 to 300 K. Analysis of galvanomagnetic measurements indicate the samples have semimetallic densities of approximately 10 to the 25th power/cu cm, with two band conduction and near carrier compensation. Reflectivity measurements suggest a band gap of approximately 0.08 eV for the samples. The temperature dependence of mobility is also measured. A series of 50 direct immersions into liquid helium and liquid nitrogen demonstrate the reliability of Bi2Se3 magnetometers for cryogenic use

    Finite temperature bosonization

    Full text link
    Finite temperature properties of a non-Fermi liquid system is one of the most challenging probelms in current understanding of strongly correlated electron systems. The paradigmatic arena for studying non-Fermi liquids is in one dimension, where the concept of a Luttinger liquid has arisen. The existence of a critical point at zero temperature in one dimensional systems, and the fact that experiments are all undertaken at finite temperature, implies a need for these one dimensional systems to be examined at finite temperature. Accordingly, we extended the well-known bosonization method of one dimensional electron systems to finite temperatures. We have used this new bosonization method to calculate finite temperature asymptotic correlation functions for linear fermions, the Tomonaga-Luttinger model, and the Hubbard model.Comment: REVTex, 48 page

    Towards the development of an Inter-Cultural Scale to Measure Trust in Automation

    Get PDF
    Trust is conceived as an attitude leading to intentions resulting in user actions involving automation. It is generally believed that trust is dynamic and that a user’s prior experience with automation affects future behavior indirectly through causing changes in trust. Additionally, individual differences and cultural factors have been frequently cited as the contributors to influencing trust beliefs about using and monitoring automation. The presented research focuses on modeling human’s trust when interacting with automated systems across cultures. The initial trust assessment instrument, comprising 110 items along with 2 perceptions (general vs. specific use of automation), has been empirically validated. Detailed results comparing items and dimensionality with our new pooled measure will be presented

    Odds and ends of atmospheric mercury in Europe and over the North Atlantic Ocean: temporal trends of 25 years of measurements

    Get PDF
    The global monitoring plan of the Minamata Convention on Mercury was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After 25 years of monitoring (since 1995), Mace Head is one of the atmospheric monitoring stations with the longest mercury record and has produced sufficient data for the analysis of temporal trends of total gaseous mercury (TGM) in Europe and the North Atlantic. Using concentration-weighted trajectories for atmospheric mercury measured at Mace Head as well as another five locations in Europe, Amderma, Andoya, Villum, Waldhof and Zeppelin, we identify the regional probabilistic source contribution factor and its changes for the period of 1996 to 2019. Temporal trends indicate that concentrations of mercury in the atmosphere in Europe and the North Atlantic have declined significantly over the past 25 years at a non-monotonic rate averaging 0.03 ng m(-3) yr(-1). Concentrations of TGM at remote marine sites were shown to be affected by continental long-range transport, and evaluation of reanalysis back trajectories displays a significant decrease in TGM in continental air masses from Europe in the last 2 decades. In addition, using the relationship between mercury and other atmospheric trace gases that could serve as a source signature, we perform factorization regression analysis, based on positive rotatable factorization to solve probabilistic mass functions. We reconstructed atmospheric mercury concentration and assessed the contribution of the major natural and anthropogenic sources. The results reveal that the observed downward trend in the atmospheric mercury is mainly associated with a factor with a high load of long-lived anthropogenic species
    • …
    corecore