4 research outputs found

    Transition phenomena in unstably stratified turbulent flows

    Full text link
    We study experimentally and theoretically transition phenomena caused by the external forcing from Rayleigh-Benard convection with the large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent flow without LSC whereby the temperature field behaves like a passive scalar. In the experiments we use the Rayleigh-B\'enard apparatus with an additional source of turbulence produced by two oscillating grids located nearby the side walls of the chamber. When the frequency of the grid oscillations is larger than 2 Hz, the large-scale circulation (LSC) in turbulent convection is destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio [(ℓx∇xT)2+(ℓy∇yT)2+(ℓz∇zT)2]/\big[(\ell_x \nabla_x T)^2 + (\ell_y \nabla_y T)^2 + (\ell_z \nabla_z T)^2\big] / varies slightly (even in the range of parameters whereby the behaviour of the temperature field is different from that of the passive scalar). Here ℓi\ell_i are the integral scales of turbulence along x, y, z directions, T and \theta are the mean and fluctuating parts of the fluid temperature. At all frequencies of the grid oscillations we have detected the long-term nonlinear oscillations of the mean temperature. The theoretical predictions based on the budget equations for turbulent kinetic energy, turbulent temperature fluctuations and turbulent heat flux, are in agreement with the experimental results.Comment: 14 pages, 14 figures, REVTEX4-1, revised versio

    Mixing at the external boundary of a submerged turbulent jet

    Full text link
    We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use Particle Image Velocimetry and an Image Processing Technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles which are characterized by large Schmidt number and small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use two approaches, whereby one approach is based on the measured phase function for the study of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that PDF of the phase function of a jet fluid penetrating into an external flow and the two-point second-order correlation function of the particle number density do not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in a qualitative agreement with the obtained experimental results.Comment: 13 pages, 13 figures, REVTEX

    Turbulent thermal diffusion in a multi-fan turbulence generator with the imposed mean temperature gradient

    Full text link
    We studied experimentally the effect of turbulent thermal diffusion in a multi-fan turbulence generator which produces a nearly homogeneous and isotropic flow with a small mean velocity. Using Particle Image Velocimetry and Image Processing techniques we showed that in a turbulent flow with an imposed mean vertical temperature gradient (stably stratified flow) particles accumulate in the regions with the mean temperature minimum. These experiments detected the effect of turbulent thermal diffusion in a multi-fan turbulence generator for relatively high Reynolds numbers. The experimental results are in compliance with the results of the previous experimental studies of turbulent thermal diffusion in oscillating grids turbulence (Buchholz et al. 2004; Eidelman et al. 2004). We demonstrated that turbulent thermal diffusion is an universal phenomenon. It occurs independently of the method of turbulence generation, and the qualitative behavior of particle spatial distribution in these very different turbulent flows is similar. Competition between turbulent fluxes caused by turbulent thermal diffusion and turbulent diffusion determines the formation of particle inhomogeneities.Comment: 9 pages, 9 figure, REVTEX4, Experiments in Fluids, in pres

    Effect of large-scale coherent structures on turbulent convection

    Full text link
    We study an effect of large-scale coherent structures on global properties of turbulent convection in laboratory experiments in air flow in a rectangular chamber with aspect ratios A≈2A \approx 2 and A≈4A\approx 4 (with the Rayleigh numbers varying in the range from 5×1065 \times 10^6 to 10810^8). The large-scale coherent structures comprise the one-cell and two-cell flow patterns. We found that a main contribution to the turbulence kinetic energy production in turbulent convection with large-scale coherent structures is due to the non-uniform large-scale motions. Turbulence in large Rayleigh number convection with coherent structures is produced by shear, rather than by buoyancy. We determined the scalings of global parameters (e.g., the production and dissipation of turbulent kinetic energy, the turbulent velocity and integral turbulent scale, the large-scale shear, etc.) of turbulent convection versus the temperature difference between the bottom and the top walls of the chamber. These scalings are in an agreement with our theoretical predictions. We demonstrated that the degree of inhomogeneity of the turbulent convection with large-scale coherent structures is small.Comment: 10 pages, 12 figures, REVTEX
    corecore