18,968 research outputs found
Electric Deflection of Rotating Molecules
We provide a theory of the deflection of polar and non-polar rotating
molecules by inhomogeneous static electric field. Rainbow-like features in the
angular distribution of the scattered molecules are analyzed in detail.
Furthermore, we demonstrate that one may efficiently control the deflection
process with the help of short and strong femtosecond laser pulses. In
particular the deflection process may by turned-off by a proper excitation, and
the angular dispersion of the deflected molecules can be substantially reduced.
We study the problem both classically and quantum mechanically, taking into
account the effects of strong deflecting field on the molecular rotations. In
both treatments we arrive at the same conclusions. The suggested control scheme
paves the way for many applications involving molecular focusing, guiding, and
trapping by inhomogeneous fields
Seven Steps Towards the Classical World
Classical physics is about real objects, like apples falling from trees,
whose motion is governed by Newtonian laws. In standard Quantum Mechanics only
the wave function or the results of measurements exist, and to answer the
question of how the classical world can be part of the quantum world is a
rather formidable task. However, this is not the case for Bohmian mechanics,
which, like classical mechanics, is a theory about real objects. In Bohmian
terms, the problem of the classical limit becomes very simple: when do the
Bohmian trajectories look Newtonian?Comment: 16 pages, LaTeX, uses latexsy
Relationship between daytime sleepiness and blood pressure in healthy older adults
Background: Some sleep disorders have been linked
to hypertension, but few studies have examined the relationship
between daytime sleepiness and blood pressure
(BP). This study attempted to determine whether scores on
a short questionnaire assessing daytime sleepiness (Epworth
Sleepiness Scale [ESS]) were associated with BP
and could be used to predict hypertension after 5 years in
healthy older adults who had not previously been diagnosed
with hypertension.
Methods: A group of 157 healthy men and women 55
to 80 years of age completed an extensive medical examination,
a series of psychosocial tests, and two 24-h ambulatory
BP sessions. After 5 years the procedures were
repeated in 133 (85%) of the subjects. Psychosocial variables
and BP were compared in subjects scoring high
(score of 10) and low (10) on the ESS.
Results: Compared to individuals with low ESS sores,
those scoring high had increased casual and sleep BP as well as higher systolic BP levels and diastolic BP variability
during waking hours, and reported higher levels of
anger, depression, anxiety, and intensity of psychological
symptoms as well as lower defensiveness. Individuals with
high ESS scores were more likely to be diagnosed with
hypertension 5 years later. Groups with high and low ESS
scores did not differ significantly on any other variables.
Conclusions: The ESS, a simple measure of daytime
sleepiness, identified individuals at risk for hypertension.
Future studies should investigate the possibility that diagnosis
and treatment of daytime sleepiness could aid in BP
reduction and ultimately in decreased morbidity and mortality
from cardiovascular disorders. Am J Hypertens
2004;17:787–792 © 2004 American Journal of Hypertension,
Ltd
Mixing by Swimming Algae
In this fluid dynamics video, we demonstrate the microscale mixing
enhancement of passive tracer particles in suspensions of swimming microalgae,
Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10
micron diameter) swim with a "breaststroke" pulling motion of their flagella at
speeds of about 100 microns/s and exhibit heterogeneous trajectory shapes.
Fluorescent tracer particles (2 micron diameter) allowed us to quantify the
enhanced mixing caused by the swimmers, which is relevant to suspension feeding
and biogenic mixing. Without swimmers present, tracer particles diffuse slowly
due solely to Brownian motion. As the swimmer concentration is increased, the
probability density functions (PDFs) of tracer displacements develop strong
exponential tails, and the Gaussian core broadens. High-speed imaging (500 Hz)
of tracer-swimmer interactions demonstrates the importance of flagellar beating
in creating oscillatory flows that exceed Brownian motion out to about 5 cell
radii from the swimmers. Finally, we also show evidence of possible cooperative
motion and synchronization between swimming algal cells.Comment: 1 page, APS-DFD 2009 Gallery of Fluid Motio
Sewing sound quantum flesh onto classical bones
Semiclassical transformation theory implies an integral representation for
stationary-state wave functions in terms of angle-action variables
(). It is a particular solution of Schr\"{o}dinger's time-independent
equation when terms of order and higher are omitted, but the
pre-exponential factor in the integrand of this integral
representation does not possess the correct dependence on . The origin of
the problem is identified: the standard unitarity condition invoked in
semiclassical transformation theory does not fix adequately in a
factor which is a function of the action written in terms of and
. A prescription for an improved choice of this factor, based on
succesfully reproducing the leading behaviour of wave functions in the vicinity
of potential minima, is outlined. Exact evaluation of the modified integral
representation via the Residue Theorem is possible. It yields wave functions
which are not, in general, orthogonal. However, closed-form results obtained
after Gram-Schmidt orthogonalization bear a striking resemblance to the exact
analytical expressions for the stationary-state wave functions of the various
potential models considered (namely, a P\"{o}schl-Teller oscillator and the
Morse oscillator).Comment: RevTeX4, 6 page
Bohmian Mechanics and Quantum Information
Many recent results suggest that quantum theory is about information, and
that quantum theory is best understood as arising from principles concerning
information and information processing. At the same time, by far the simplest
version of quantum mechanics, Bohmian mechanics, is concerned, not with
information but with the behavior of an objective microscopic reality given by
particles and their positions. What I would like to do here is to examine
whether, and to what extent, the importance of information, observation, and
the like in quantum theory can be understood from a Bohmian perspective. I
would like to explore the hypothesis that the idea that information plays a
special role in physics naturally emerges in a Bohmian universe.Comment: 25 pages, 2 figure
Thermodynamic entropy production fluctuation in a two dimensional shear flow model
We investigate fluctuations in the momentum flux across a surface
perpendicular to the velocity gradient in a stationary shear flow maintained by
either thermostated deterministic or by stochastic boundary conditions. In the
deterministic system the Gallavotti-Cohen (GC)relation for the probability of
large deviations, which holds for the phase space volume contraction giving the
Gibbs ensemble entropy production, never seems to hold for the flux which gives
the hydrodynamic entropy production. In the stochastic case the GC relation is
found to hold for the total flux, as predicted by extensions of the GC theorem
but not for the flux across part of the surface. The latter appear to satisfy a
modified GC relation. Similar results are obtained for the heat flux in a
steady state produced by stochastic boundaries at different temperatures.Comment: 9 postscript figure
Development of Simulators for Electrochemical Responses: Experimental and Pedagogical Applications
The work carried out in this CRADA addressed the development of computational algorithms to simulate the response for commonly used electrochemical techniques. The goal was the incorporation of these algorithms into DigiSimR, a generalized simulator for cyclic voltammetry (CV). CV, a ubiquitously applied electroanalytical technique used by nonelectrochemists as well as electrochemists, is sometimes referred to as "electrochemical spectroscopy". The latest version, DigiSimR 2.1, is now being sold by the industrial partner, Bioanalytical Systems, Inc. The response of the electrochemical community to this latest program (as well as its predecessors, DigiSimR 2.0 and the DOS version; versions 2.0 and 2.1 are for Windows), has been uniformly positive and numerous publications are now appearing which feature its application
- …