684 research outputs found

    Bowen Measure From Heteroclinic Points

    Full text link
    We present a new construction of the entropy-maximizing, invariant probability measure on a Smale space (the Bowen measure). Our construction is based on points that are unstably equivalent to one given point, and stably equivalent to another: heteroclinic points. The spirit of the construction is similar to Bowen's construction from periodic points, though the techniques are very different. We also prove results about the growth rate of certain sets of heteroclinic points, and about the stable and unstable components of the Bowen measure. The approach we take is to prove results through direct computation for the case of a Shift of Finite type, and then use resolving factor maps to extend the results to more general Smale spaces

    Entropy potential and Lyapunov exponents

    Full text link
    According to a previous conjecture, spatial and temporal Lyapunov exponents of chaotic extended systems can be obtained from derivatives of a suitable function: the entropy potential. The validity and the consequences of this hypothesis are explored in detail. The numerical investigation of a continuous-time model provides a further confirmation to the existence of the entropy potential. Furthermore, it is shown that the knowledge of the entropy potential allows determining also Lyapunov spectra in general reference frames where the time-like and space-like axes point along generic directions in the space-time plane. Finally, the existence of an entropy potential implies that the integrated density of positive exponents (Kolmogorov-Sinai entropy) is independent of the chosen reference frame.Comment: 20 pages, latex, 8 figures, submitted to CHAO

    Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization

    Full text link
    We present a straightforward and reliable continuous method for computing the full or a partial Lyapunov spectrum associated with a dynamical system specified by a set of differential equations. We do this by introducing a stability parameter beta>0 and augmenting the dynamical system with an orthonormal k-dimensional frame and a Lyapunov vector such that the frame is continuously Gram-Schmidt orthonormalized and at most linear growth of the dynamical variables is involved. We prove that the method is strongly stable when beta > -lambda_k where lambda_k is the k'th Lyapunov exponent in descending order and we show through examples how the method is implemented. It extends many previous results.Comment: 14 pages, 10 PS figures, ioplppt.sty, iopl12.sty, epsfig.sty 44 k

    Correlation Inequalities for Quantum Spin Systems with Quenched Centered Disorder

    Full text link
    It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved (arXiv:cond-mat/0612371) in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.Comment: 4 page

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Possibility of Turbulent Crystals

    Full text link
    The possibility for the occurrence in crystals of a phenomenon, resembling turbulence, is discussed. This phenomenon, called {\it heterophase turbulence}, is manifested by the fluctuational appearance inside a crystalline sample of disordered regions randomly distributed in space. The averaged picture for such a turbulent solid is exemplified by an exactly solvable lattice-gas model. The origin of heterophase turbulence is connected with stochastic instability of quasi-isolated systems.Comment: Latex file, 20 pages, no figure

    Modelling quasicrystals at positive temperature

    Full text link
    We consider a two-dimensional lattice model of equilibrium statistical mechanics, using nearest neighbor interactions based on the matching conditions for an aperiodic set of 16 Wang tiles. This model has uncountably many ground state configurations, all of which are nonperiodic. The question addressed in this paper is whether nonperiodicity persists at low but positive temperature. We present arguments, mostly numerical, that this is indeed the case. In particular, we define an appropriate order parameter, prove that it is identically zero at high temperatures, and show by Monte Carlo simulation that it is nonzero at low temperatures

    Rational vs Polynomial Character of Wnl_n^l-Algebras

    Full text link
    The constraints proposed recently by Bershadsky to produce WnlW^l_n algebras are a mixture of first and second class constraints and are degenerate. We show that they admit a first-class subsystem from which they can be recovered by gauge-fixing, and that the non-degenerate constraints can be handled by previous methods. The degenerate constraints present a new situation in which the natural primary field basis for the gauge-invariants is rational rather than polynomial. We give an algorithm for constructing the rational basis and converting the base elements to polynomials.Comment: 18 page

    Nonconcave entropies from generalized canonical ensembles

    Get PDF
    It is well-known that the entropy of the microcanonical ensemble cannot be calculated as the Legendre transform of the canonical free energy when the entropy is nonconcave. To circumvent this problem, a generalization of the canonical ensemble which allows for the calculation of nonconcave entropies was recently proposed. Here, we study the mean-field Curie-Weiss-Potts spin model and show, by direct calculations, that the nonconcave entropy of this model can be obtained by using a specific instance of the generalized canonical ensemble known as the Gaussian ensemble.Comment: 5 pages, RevTeX4, 3 figures (best viewed in ps
    • …
    corecore