1,257 research outputs found

    Temporal Variability of the X-ray Emission of the Crab Nebula Torus

    Get PDF
    We have analyzed five ROSAT HRI images of the Crab Nebula spanning the years 1991 to 1997 and have found significant changes in the emission structure of the X-ray torus surrounding the pulsar. Certain regions increase in brightness by about 20% over the six years, while others show decreases in surface brightness. The origin of these changes is unclear, but a possible explanation is that the bulk velocity of the synchrotron radiating electrons has decreased on the order of 20% as well.Comment: 15 pages plus 6 figures, figure 1 and figure 6 are in color, to appear in The Astrophysical Journal, Jan 1, 1999, Vol. 510, #

    The velocity peaks in the cold dark matter spectrum on Earth

    Full text link
    The cold dark matter spectrum on earth is expected to have peaks in velocity space. We obtain estimates for the sizes and locations of these peaks. To this end we have generalized the secondary infall model of galactic halo formation to include angular momentum of the dark matter particles. This new model is still spherically symmetric and it has self-similar solutions. Our results are relevant to direct dark matter search experiments.Comment: 12 pages including 1 table and 4 figures, LaTeX, REVTEX 3.0 versio

    The secondary infall model of galactic halo formation and the spectrum of cold dark matter particles on Earth

    Get PDF
    The spectrum of cold dark matter particles on Earth is expected to have peaks in velocity space associated with particles which are falling onto the Galaxy for the first time and with particles which have fallen in and out of the Galaxy only a small number of times in the past. We obtain estimates for the velocity magnitudes and the local densities of the particles in these peaks. To this end we use the secondary infall model of galactic halo formation which we have generalized to take account of the angular momentum of the dark matter particles. The new model is still spherically symmetric and it admits self-similar solutions. In the absence of angular momentum, the model produces flat rotation curves for a large range of values of a parameter ϵ\epsilon which is related to the spectrum of primordial density perturbations. We find that the presence of angular momentum produces an effective core radius, i.e. it makes the contribution of the halo to the rotation curve go to zero at zero radius. The model provides a detailed description of the large scale properties of galactic halos including their density profiles, their extent and total mass. We obtain predictions for the kinetic energies of the particles in the velocity peaks and estimates for their local densities as functions of the amount of angular momentum, the age of the universe and ϵ\epsilon.Comment: LaTeX, 39 pages including 18 figure

    Probing the evolution of early-type cluster galaxies through chemical enrichment

    Get PDF
    A simple chemical enrichment model for cluster early-type galaxies is described in which the mechanisms considered in the evolutionary model are infall of primordial gas, outflows and a possible variation in the star formation efficiency. We find that - within the framework of our models - only outflows can generate a suitable range of metallicities. The chemical enrichment tracks can be combined with the latest population synthesis models to simulate clusters over a wide redshift range, for a set of toy models. The color-magnitude relation of local clusters is used as a constraint, fixing the correlation between absolute luminosity and ejected fraction of gas from outflows. It is found that the correlations between color or mass-to-light ratios and absolute luminosity are degenerate with respect to most of the input parameters. However, a significant change between monolithic and hierarchical models is predicted for redshifts z\simgt 1. The comparison between predicted and observed mass-to-light ratios yield an approximate linear bias between total and stellar masses: MTotMSt1.15±0.08M_{\rm Tot}\propto M_{\rm St}^{1.15\pm 0.08} in early-type galaxies. If we assume that outflows constitute the driving mechanism for the colors observed in cluster early type galaxies, the metallicity of the intracluster medium (ICM) can be linked to outflows. The color-magnitude constraint requires faint MV16M_V\sim -16 galaxies to eject 85% of their gas, which means that most of the metals in the ICM may have originated in these dwarf galaxies.Comment: Accepted for publication in ApJ. Uses emulateapj.sty. 12 pages with 10 embedded EPS figure

    Core-Collapse Simulations of Rotating Stars

    Get PDF
    We present the results from a series of two-dimensional core-collapse simulations using a rotating progenitor star. We find that the convection in these simulations is less vigorous because a) rotation weakens the core bounce which seeds the neutrino-driven convection and b) the angular momentum profile in the rotating core stabilizes against convection. The limited convection leads to explosions which occur later and are weaker than the explosions produced from the collapse of non-rotating cores. However, because the convection is constrained to the polar regions, when the explosion occurs, it is stronger along the polar axis. This asymmetric explosion can explain the polarization measurements of core-collapse supernovae. These asymmetries also provide a natural mechanism to mix the products of nucleosynthesis out into the helium and hydrogen layers of the star. We also discuss the role the collapse of these rotating stars play on the generation of magnetic fields and neutron star kicks. Given a range of progenitor rotation periods, we predict a range of supernova energies for the same progenitor mass. The critical mass for black hole formation also depends upon the rotation speed of the progenitor.Comment: 16 pages text + 13 figures, submitted to Ap

    Recent Diarrhea is Associated with Elevated Salivary IgG Responses to Cryptosporidium in Residents of an Eastern Massachusetts Community

    Get PDF
    BACKGROUND: Serological data suggest that Cryptosporidium infections are common but underreported. The invasiveness of blood sampling limits the application of serology in epidemiological surveillance. We pilot-tested a non-invasive salivary anti-Cryptosporidium antibody assay in a community survey involving children and adults. MATERIALS AND METHODS: Families with children were recruited in a Massachusetts community in July; symptoms data were collected at 3 monthly follow-up mail surveys. One saliva sample per person (n = 349) was collected via mail, with the last survey in October. Samples were analyzed for IgG and IgA responses to a recombinant C. hominis gp15 sporozoite protein using a time-resolved fluorometric immunoassay. Log-transformed assay results were regressed on age using penalized B-splines to account for the strong age-dependence of antibody reactions. Positive responses were defined as fluorescence values above the upper 99% prediction limit. RESULTS: Forty-seven (13.5%) individuals had diarrhea without concurrent respiratory symptoms during the 3-month-long follow-up; eight of them had these symptoms during the month prior to saliva sampling. Two individuals had positive IgG responses: an adult who had diarrhea during the prior month and a child who had episodes of diarrhea during each survey month (Fisher\u27s exact test for an association between diarrhea and IgG response: p = 0.0005 for symptoms during the prior month and p = 0.02 for symptoms during the entire follow-up period). The child also had a positive IgA response, along with two asymptomatic individuals (an association between diarrhea and IgA was not significant). CONCLUSION: These results suggest that the salivary IgG specific to Cryptosporidium antigens warrants further evaluation as a potential indicator of recent infections

    Intermediate mass stars: updated models

    Get PDF
    A new set of stellar models in the mass range 1.2 to 9 MM_{\odot} is presented. The adopted chemical compositions cover the typical galactic values, namely 0.0001Z0.020.0001 \le Z \le 0.02 and 0.23Y0.280.23 \le Y \le 0.28. A comparison among the most recent compilations of similar stellar models is also discussed. The main conclusion is that the differencies among the various evolutionary results are still rather large. For example, we found that the H-burning evolutionary time may differ up to 20 %. An even larger disagreement is found for the He-burning phase (up to 40-50 %). Since the connection between the various input physics and the numerical algorithms could amplify or counterbalance the effect of a single ingredient on the resulting stellar model, the origin of this discrepancies is not evident. However most of these discrepancies, which are clearly found in the evolutionary tracks, are reduced on the isochrones. By means of our updated models we show that the ages inferred by the theory of stellar evolution is in excellent agreement with those obtained by using other independent methods applied to the nearby Open Clusters. Finally, the theoretical initial/final mass relation is revised.Comment: 35 pages, 24 figures, 4 tables, accepted for publication in the Astrophisycal Journa

    Blue Straggler Stars: Early Observations that Failed to Solve the Problem

    Full text link
    In this chapter, I describe early ideas on blue stragglers, and various observations (some published, some not) that promised but failed to resolve the question of their origin. I review the data and ideas that were circulating from Allan Sandage's original discovery in 1953 of "anomalous blue stars" in the globular cluster M3, up until about 1992, when what seems to have been the only previous meeting devoted to Blue Straggler Stars (BSSs) was held at the Space Telescope Science Institute.Comment: Chapter 2, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components

    Full text link
    The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul
    corecore