11 research outputs found

    Бпособ получСния соли олигогСксамСтилСнгуанидина высокой стСпСни чистоты

    Get PDF
    Objectives. Given that microorganisms can become resistant to certain groups of drugs and considering also their ability to form biofilms, the development of new drugs that are active against adapted microflora is required. This study focused on the development of a new method for the synthesis of a promising compound, the branched hydrosuccinate oligohexamethylene guanidine (OHMGsucc), with high purity that meets the standards of the 14th edition State Pharmacopeia of the Russian Federation (SPRF). Previously proposed methods have managed to isolate this product, which, however, complies with the requirements of the outdated SPRF. Therefore, the main aim of this study was to update the regulatory framework for the indicated OHMG salt for its further use in the pharmaceutical industry according to modern standards.Methods. To control the residual impurities of hexamethylenediamine (HMDA) and guanidine hydrochloride (GHC), high-performance liquid chromatography (HPLC) was applied using a Thermo Scientific Dionex UltiMate 3000 chromatograph, and the chromatographic signals of the test solution with those of a standard sample solution obtained by a previously published conventional method were compared.Results. The HPLC experimental data indicated a significant difference in the quantitative content of HMDA and GHC observed for the new and older preparation method of the branched OHMGsucc, suggesting that the method disclosed in this article can be used to obtain highly pure OHMGsucc.Conclusions. The specified compound was standardized with the parameter β€œrelated impurities” according to the current (14th) edition of the SPRF. The effectiveness and reproducibility of the proposed method was experimentally confirmed. In addition, a process diagram for the preparation of the indicated OHMG salt was prepared.Π¦Π΅Π»ΠΈ. На Ρ„ΠΎΠ½Π΅ приобрСтСния ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ рСзистСнтности ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌ лСкарствСнных срСдств, Π° Ρ‚Π°ΠΊΠΆΠ΅ способностСй ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ Π±ΠΈΠΎΠΏΠ»Π΅Π½ΠΊΠΈ, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹, Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Ρ‹. CΡ‚Π°Ρ‚ΡŒΡ посвящСна ΠΈΠ·Ρ‹ΡΠΊΠ°Π½ΠΈΡŽ способа получСния пСрспСктивного соСдинСния – Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ гидросукцината олигогСксамСтилСнгуанидина с высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ чистоты, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π½ΠΎΡ€ΠΌΠ°ΠΌ ГосударствСнной Π€Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΈ 14 издания. Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ Ρ€Π°Π½Π΅Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ позволяли ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚, ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‰ΠΈΠΉ трСбованиям ΡƒΡΡ‚Π°Ρ€Π΅Π²ΡˆΠ΅ΠΉ ГосударствСнной Π€Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΈ, Ρ‚ΠΎ основной Ρ†Π΅Π»ΡŒΡŽ являлась актуализация Π½ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Π±Π°Π·Ρ‹ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ соли олигогСксамСтилСнгуанидина для Π΅Π΅ дальнСйшСго примСнСния Π² фармацСвтичСской отрасли согласно соврСмСнным стандартам.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Для контроля примСсных соСдинСний – гСксамСтилСндиамина ΠΈ Π³ΡƒΠ°Π½ΠΈΠ΄ΠΈΠ½Π° Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄Π° примСняли Π²Ρ‹ΡΠΎΠΊΠΎΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚Π½ΡƒΡŽ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΡŽ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Π΅ Thermo Scientific Dionex UltiMate 3000 ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ внСшнСго стандарта.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. На основании ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π° Ρ€Π°Π·Π½ΠΈΡ†Π° Π² количСствСнном содСрТании остаточных примСсСй Π² составС субстанции Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ гидросукцината олигогСксамСтилСнгуанидина, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ двумя Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ способами. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ способ, ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠΈ, позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΈΡ… содСрТаниС ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Богласно прСдставлСнным Π΄Π°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° стандартизация ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ соСдинСния ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρƒ «РодствСнныС примСси» Π² соотвСтствии с Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΈΠ·Π΄Π°Π½ΠΈΠ΅ΠΌ ГосударствСнной Π€Π°Ρ€ΠΌΠ°ΠΊΠΎΠΏΠ΅ΠΈ. ВслСдствиС Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΠ»Π°ΡΡŒ, Π½Π° Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ этапС Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»Π° составлСна тСхнологичСская схСма получСния ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ соли олигогСксамСтилСнгуанидина

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΈ валидация ΠΌΠ΅Ρ‚ΠΎΠ΄Π° контроля ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΉ примСси Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄Π° Π³ΡƒΠ°Π½ΠΈΠ΄ΠΈΠ½Π° Π² фармацСвтичСской субстанции Β«Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½Ρ‹ΠΉ Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄ олигогСксамСтилСнгуанидина»

    Get PDF
    Some existing methodologies for quantitative estimation of guanidine hydrochloride during the analysis of various samples were described. Their shortcomings impeding the implementation of the control of the monomer in the pharmaceutical substance were identified. A method for quantitative determination of guanidine hydrochloride in pharmaceutical substance β€œbranched oligo(hexamethyleneguanidine) hydrochloride” by high performance liquid chromatography was developed. The method was validated to standardize the substance by the parameter β€œimpurity compounds”.ΠžΠΏΠΈΡΠ°Π½Ρ‹ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ опрСдСлСния Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄Π° Π³ΡƒΠ°Π½ΠΈΠ΄ΠΈΠ½Π° ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ², ΡƒΠΊΠ°Π·Π°Π½Ρ‹ ΠΈΡ… нСдостатки, ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»Π΅Π½ΠΈΡŽ контроля ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π° Π² фармацСвтичСской субстанции. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° количСствСнного опрСдСлСния Π³ΠΈΠ΄Ρ€ΠΎ-Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° Π³ΡƒΠ°Π½ΠΈΠ΄ΠΈΠ½Π° Π² фармацСвтичСской субстанции Β«Ρ€Π°Π·Π²Π΅Ρ‚Π²Π»Π΅Π½Π½Ρ‹ΠΉ Π³ΠΈΠ΄Ρ€ΠΎΡ…Π»ΠΎΡ€ΠΈΠ΄ олигогСкса-ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π³ΡƒΠ°Π½ΠΈΠ΄ΠΈΠ½Π°Β» с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Π΅Π΅ валидация с Ρ†Π΅Π»ΡŒΡŽ стандартизации субстанции ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρƒ «примСсныС соСдинСния»

    DOSAGE FORMS OF NONSTEROIDAL ANTI-INFLAMMATORY PHARMACEUTICAL SUBSTANCE FOR CONTROLLED RELEASE

    Get PDF
    This review is about nonsteroidal anti-inflammatory drugs and different approaches to development of pharmaceutical forms for controlled nonsteroidal anti-inflammatory drug release. Natural and synthetic biocompatible polymers used as drug carriers were considered. Different methods used for production of polymeric microparticles and formulations of nonsteroidal anti-inflammatory agents based on them were discussed. Characterization of microparticles with encapsulated nonsteroidal anti-inflammatory agents was given

    The synthesis of 1-(3,4-methylenedioxyphenyl)-2-nitro-1-butene

    No full text

    An effective method for preparation of high purity oligohexamethylene guanidine salts

    Get PDF
    Objectives. Given that microorganisms can become resistant to certain groups of drugs and considering also their ability to form biofilms, the development of new drugs that are active against adapted microflora is required. This study focused on the development of a new method for the synthesis of a promising compound, the branched hydrosuccinate oligohexamethylene guanidine (OHMGsucc), with high purity that meets the standards of the 14th edition State Pharmacopeia of the Russian Federation (SPRF). Previously proposed methods have managed to isolate this product, which, however, complies with the requirements of the outdated SPRF. Therefore, the main aim of this study was to update the regulatory framework for the indicated OHMG salt for its further use in the pharmaceutical industry according to modern standards.Methods. To control the residual impurities of hexamethylenediamine (HMDA) and guanidine hydrochloride (GHC), high-performance liquid chromatography (HPLC) was applied using a Thermo Scientific Dionex UltiMate 3000 chromatograph, and the chromatographic signals of the test solution with those of a standard sample solution obtained by a previously published conventional method were compared.Results. The HPLC experimental data indicated a significant difference in the quantitative content of HMDA and GHC observed for the new and older preparation method of the branched OHMGsucc, suggesting that the method disclosed in this article can be used to obtain highly pure OHMGsucc.Conclusions. The specified compound was standardized with the parameter β€œrelated impurities” according to the current (14th) edition of the SPRF. The effectiveness and reproducibility of the proposed method was experimentally confirmed. In addition, a process diagram for the preparation of the indicated OHMG salt was prepared

    Development and validation of the method of control monomer impurities guanidine hydrochloride in pharmaceutical substance β€œbranched hydrochloride oligo(hexamethyleneguanidine)”

    No full text
    Some existing methodologies for quantitative estimation of guanidine hydrochloride during the analysis of various samples were described. Their shortcomings impeding the implementation of the control of the monomer in the pharmaceutical substance were identified. A method for quantitative determination of guanidine hydrochloride in pharmaceutical substance β€œbranched oligo(hexamethyleneguanidine) hydrochloride” by high performance liquid chromatography was developed. The method was validated to standardize the substance by the parameter β€œimpurity compounds”

    Oligohexamethylene Guanidine Derivative as a Means to Prevent Biological Fouling of a Polymer-Based Composite Optical Oxygen Sensor

    No full text
    The use of biocidal agents is a common practice for protection against biofouling in biomass-rich environments. In this paper, oligohexamethyleneguanidine (OHMG) polymer, known for its biocidal properties, was further modified with para-aminosalicylic acid (PAS) to enhance its properties against microorganisms coated with a lipid membrane. The structure of the product was confirmed by 1H NMR, 13C NMR, and FTIR spectroscopy. The values of the minimum inhibitory concentration (MIC) against Mycobacterium smegmatis ATCC 607 and Pseudomonas chlororaphis 449 were found to be 1.40 and 1.05 ΞΌg/mL, respectively. The synthesized substance was used as an additive to the polymer matrix of the composite optical oxygen sensor material. A series of samples with different contents of OHMG-PAS was prepared using a co-dissolution method implying the fabrication of a coating from a solution containing both polymers. It turned out that the mutual influence of the components significantly affects the distribution of the indicator in the matrix, surface morphology, and contact angle. The optimal polymer content turned out to be wt.3%, at which point the water contact angle reaches almost 122Β°, and the fouling rate decreases by almost five times, which is confirmed by both the respiratory MTT assay and confocal microscopy with staining. This opens up prospects for creating stable and biofouling-resistant sensor elements for use in air tanks or seawater
    corecore