96 research outputs found
Impurity effects on the melting of Ni clusters
We demonstrate that the addition of a single carbon impurity leads to
significant changes in the thermodynamic properties of Ni clusters consisting
of more than a hundred atoms. The magnitude of the change induced is dependent
upon the parameters of the Ni-C interaction. Hence, thermodynamic properties of
Ni clusters can be effectively tuned by the addition of an impurity of a
particular type. We also show that the presence of a carbon impurity
considerably changes the mobility and diffusion of atoms in the Ni cluster at
temperatures close to its melting point. The calculated diffusion coefficients
of the carbon impurity in the Ni cluster can be used for a reliable estimate of
the growth rate of carbon nanotubes.Comment: 27 pages, 13 figure
Melting Point and Lattice Parameter Shifts in Supported Metal Nanoclusters
The dependencies of the melting point and the lattice parameter of supported
metal nanoclusters as functions of clusters height are theoretically
investigated in the framework of the uniform approach. The vacancy mechanism
describing the melting point and the lattice parameter shifts in nanoclusters
with decrease of their size is proposed. It is shown that under the high vacuum
conditions (p<10^-7 torr) the essential role in clusters melting point and
lattice parameter shifts is played by the van der Waals forces of
cluster-substrate interation. The proposed model satisfactorily accounts for
the experimental data.Comment: 6 pages, 3 figures, 1 tabl
Thermodynamics of tin clusters
We report the results of detailed thermodynamic investigations of the
Sn cluster using density-functional molecular dynamics. These
simulations have been performed over a temperature range of 150 to 3000 K, with
a total simulation time of order 1 ns. The prolate ground state and low-lying
isomers consist of two tricapped trigonal prism (TTP) units stacked end to end.
The ionic specific heat, calculated via a multihistogram fit, shows a small
peak around 500 K and a shoulder around 850 K. The main peak occurs around 1200
K, about 700 K higher than the bulk melting temperature, but significantly
lower than that for Sn. The main peak is accompanied by a sharp change
in the prolate shape of the cluster due to the fusion of the two TTP units to
form a compact, near spherical structure with a diffusive liquidlike ionic
motion. The small peak at 500 K is associated with rearrangement processes
within the TTP units, while the shoulder at 850 K corresponds to distortion of
at least one TTP unit, preserving the overall prolate shape of the cluster. At
all temperatures observed, the bonding remains covalent.Comment: Latex File and EPS Figures. 18 pages,11 Figures. Submitted to Phys.
Rev.
- …