460 research outputs found

    New analytic running coupling in QCD: higher loop levels

    Get PDF
    The properties of the new analytic running coupling are investigated at the higher loop levels. The expression for this invariant charge, independent of the normalization point, is obtained by invoking the asymptotic freedom condition. It is shown that at any loop level the relevant β\beta function has the universal behaviors at small and large values of the invariant charge. Due to this feature the new analytic running coupling possesses the universal asymptotics both in the ultraviolet and infrared regions irrespective of the loop level. The consistency of the model considered with the general definition of the QCD invariant charge is shown.Comment: LaTeX 2.09, 12 pages with 5 EPS figures, uses mpla1.sty; enlarged version is accepted for publication in Mod. Phys. Lett.

    Casimir energy of a compact cylinder under the condition ϵμ=c2\epsilon\mu = c^{-2}

    Full text link
    The Casimir energy of an infinite compact cylinder placed in a uniform unbounded medium is investigated under the continuity condition for the light velocity when crossing the interface. As a characteristic parameter in the problem the ratio ξ2=(ϵ1ϵ2)2/(ϵ1+ϵ2)2=(μ1μ2)2/(μ1+μ2)21\xi^2=(\epsilon_1-\epsilon_2)^2/ (\epsilon_1+\epsilon_2)^-2 = (\mu_1-\mu_2)^2/(\mu_1+ \mu_2)^2 \le 1 is used, where ϵ1\epsilon_1 and μ1\mu_1 are, respectively, the permittivity and permeability of the material making up the cylinder and ϵ2\epsilon_2 and μ2\mu_2 are those for the surrounding medium. It is shown that the expansion of the Casimir energy in powers of this parameter begins with the term proportional to ξ4\xi^4. The explicit formulas permitting us to find numerically the Casimir energy for any fixed value of ξ2\xi^2 are obtained. Unlike a compact ball with the same properties of the materials, the Casimir forces in the problem under consideration are attractive. The implication of the calculated Casimir energy in the flux tube model of confinement is briefly discussed.Comment: REVTeX, 12 pages, 1 figure in a separate fig1.eps file, 1 table; minor corrections in English and misprints; version to be published in Phys. Rev. D1

    Two-Photon Excitation of Low-Lying Electronic Quadrupole States in Atomic Clusters

    Full text link
    A simple scheme of population and detection of low-lying electronic quadrupole modes in free small deformed metal clusters is proposed. The scheme is analyzed in terms of the TDLDA (time-dependent local density approximation) calculations. As test case, the deformed cluster Na11+Na^+_{11} is considered. Long-living quadrupole oscillations are generated via resonant two-photon (two-dipole) excitation and then detected through the appearance of satellites in the photoelectron spectra generated by a probe pulse. Femtosecond pump and probe pulses with intensities I=2101021011W/cm2I = 2\cdot 10^{10} - 2\cdot 10^{11} W/cm^2 and pulse duration T=200500T = 200 - 500 fs are found to be optimal. The modes of interest are dominated by a single electron-hole pair and so their energies, being combined with the photoelectron data for hole states, allow to gather new information about mean-field spectra of valence electrons in the HOMO-LUMO region. Besides, the scheme allows to estimate the lifetime of electron-hole pairs and hence the relaxation time of electronic energy into ionic heat.Comment: 4 pages, 4 figure

    Shock Wave Structure in a Strongly Nonlinear Granular Lattice with Viscous Dissipation

    Full text link
    The shock wave structure in a one-dimensional lattice (e.g. granular chain) with a power law dependence of force on displacement between particles with viscous dissipation is considered and compared to the corresponding long wave approximation. A dissipative term depending on the relative velocity between neighboring particles is included in the discrete model to investigate its influence on the shape of steady shock profiles. The critical viscosity coefficient is obtained from the long-wave approximation for arbitrary values of the exponent n and denotes the transition from an oscillatory to a monotonic shock profile in stronly nonlinear systems. The expression for the critical viscosity coefficient converges to the known equation for the critical viscosity in the weakly nonlinear case. Values of viscosity based on this expression are comparable to the values obtained in the numerical analysis of a discrete particle lattice with a Herzian contact interaction corresponding to n = 3/2. An initial disturbance in a discrete system approaches a stationary shock profile after traveling a short distance that is comparable to the width of the leading pulse of a stationary shock front. The shock front width is minimized when the viscosity is equal to its critical value.Comment: 20 pages, 6 figure

    STIRAP transport of Bose-Einstein condensate in triple-well trap

    Full text link
    The irreversible transport of multi-component Bose-Einstein condensate (BEC) is investigated within the Stimulated Adiabatic Raman Passage (STIRAP) scheme. A general formalism for a single BEC in M-well trap is derived and analogy between multi-photon and tunneling processes is demonstrated. STIRAP transport of BEC in a cyclic triple-well trap is explored for various values of detuning and interaction between BEC atoms. It is shown that STIRAP provides a complete population transfer at zero detuning and interaction and persists at their modest values. The detuning is found not to be obligatory. The possibility of non-adiabatic transport with intuitive order of couplings is demonstrated. Evolution of the condensate phases and generation of dynamical and geometric phases are inspected. It is shown that STIRAP allows to generate the unconventional geometrical phase which is now of a keen interest in quantum computing.Comment: 9 pages, 6 figures. To be published in Laser Physics (v. 19, n.4, 2009

    Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder

    Full text link
    Using the mode-by-mode summation technique the zero point energy of the electromagnetic field is calculated for the boundary conditions given on the surface of an infinite solid cylinder. It is assumed that the dielectric and magnetic characteristics of the material which makes up the cylinder (ϵ1,μ1)(\epsilon_1, \mu_1) and of that which makes up the surroundings (ϵ2,μ2)(\epsilon_2, \mu_2) obey the relation ϵ1μ1=ϵ2μ2\epsilon_1\mu_1= \epsilon_2\mu_2. With this assumption all the divergences cancel. The divergences are regulated by making use of zeta function techniques. Numerical calculations are carried out for a dilute dielectric cylinder and for a perfectly conducting cylindrical shell. The Casimir energy in the first case vanishes, and in the second is in complete agreement with that obtained by DeRaad and Milton who employed a Green's function technique with an ultraviolet regulator.Comment: REVTeX, 16 pages, no figures and tables; transcription error in previous version corrected, giving a zero Casimir energy for a tenuous cylinde

    Low-energy M1 states in deformed nuclei: spin-scissors or spin-flip?

    Full text link
    The low-energy M1M1 states in deformed 164^{164}Dy and spherical 58^{58}Ni are explored in the framework of fully self-consistent Quasiparticle Random-Phase Approximation (QRPA) with various Skyrme forces. The main attention is paid to orbital and spin M1M1 excitations. The obtained results are compared with the prediction of the low-energy {\it spin-scissors} M1M1 resonance suggested within Wigner Function Moments (WFM) approach. A possible relation of this resonance to low-energy spin-flip excitations is analyzed. In connection with recent WFM studies, we consider evolution of the low-energy spin-flip states in 164^{164}Dy with deformation (from the equilibrium value to the spherical limit). The effect of tensor forces is briefly discussed. It is shown that two groups of 1+1^+ states observed at 2.4-4 MeV in 164^{164}Dy are rather explained by fragmentation of the orbital M1M1 strength than by the occurrence of the collective spin-scissors resonance. In general, our calculations do not confirm the existence of this resonance.Comment: 7 pages, 7 figures, submitted to Physics of Atomic Nuclei. arXiv admin note: text overlap with arXiv:2102.13580. As compared with the previous version, Ref. [1] was removed, Ref [33] was replaced, description of Fig. 3 was modifie

    Extended analytic QCD model with perturbative QCD behavior at high momenta

    Full text link
    In contrast to perturbative QCD, the analytic QCD models have running coupling whose analytic properties correctly mirror those of spacelike observables. The discontinuity (spectral) function of such running coupling is expected to agree with the perturbative case at large timelike momenta; however, at low timelike momenta it is not known. In the latter regime, we parametrize the unknown behavior of the spectral function as a sum of (two) delta functions; while the onset of the perturbative behavior of the spectral function is set to be 1.0-1.5 GeV. This is in close analogy with the "minimal hadronic ansatz" used in the literature for modeling spectral functions of correlators. For the running coupling itself, we impose the condition that it basically merges with the perturbative coupling at high spacelike momenta. In addition, we require that the well-measured nonstrange semihadronic (V+A) tau decay ratio value be reproduced by the model. We thus obtain a QCD framework which is basically indistinguishable from perturbative QCD at high momenta (Q > 1 GeV), and at low momenta it respects the basic analyticity properties of spacelike observables as dictated by the general principles of the local quantum field theories.Comment: 15 pages, 6 figures; in v2 Sec.IV is extended after Eq.(48) and refs.[51-52] added; v2 published in Phys.Rev.D85,114043(2012

    Microscopic analysis of dipole electric and magnetic strengths in 156^{156}Gd

    Full text link
    The dipole electric (E1E1) and magnetic (M1M1) strengths in strongly deformed 156^{156}Gd are investigated within a fully self-consistent Quasiparticle Random Phase Approximation (QRPA) with Skyrme forces SV-bas, SLy6 and SG2. We inspect, on the same theoretical footing, low-lying dipole states and the isovector giant dipole resonance in E1E1 channel and orbital scissors resonance as well as spin-flip giant resonance in M1M1 channel. Besides, E1E1 toroidal mode and low-energy spin-flip M1M1 excitations are considered. The calculations show a good agreement with available experimental data, except for the recent NRF measurements of M. Tamkas et al for M1M1 strength at 4-6 MeV, where, in contradiction with our calculations and previous (p,p)(p,p') data, almost no M1M1 strength was observed.Comment: 8 pages, 4 figure
    corecore