168 research outputs found
Minkowski superspaces and superstrings as almost real-complex supermanifolds
In 1996/7, J. Bernstein observed that smooth or analytic supermanifolds that
mathematicians study are real or (almost) complex ones, while Minkowski
superspaces are completely different objects. They are what we call almost
real-complex supermanifolds, i.e., real supermanifolds with a non-integrable
distribution, the collection of subspaces of the tangent space, and in every
subspace a complex structure is given.
An almost complex structure on a real supermanifold can be given by an even
or odd operator; it is complex (without "always") if the suitable superization
of the Nijenhuis tensor vanishes. On almost real-complex supermanifolds, we
define the circumcised analog of the Nijenhuis tensor. We compute it for the
Minkowski superspaces and superstrings. The space of values of the circumcised
Nijenhuis tensor splits into (indecomposable, generally) components whose
irreducible constituents are similar to those of Riemann or Penrose tensors.
The Nijenhuis tensor vanishes identically only on superstrings of
superdimension 1|1 and, besides, the superstring is endowed with a contact
structure. We also prove that all real forms of complex Grassmann algebras are
isomorphic although singled out by manifestly different anti-involutions.Comment: Exposition of the same results as in v.1 is more lucid. Reference to
related recent work by Witten is adde
The Shapovalov determinant for the Poisson superalgebras
Among simple Z-graded Lie superalgebras of polynomial growth, there are
several which have no Cartan matrix but, nevertheless, have a quadratic even
Casimir element C_{2}: these are the Lie superalgebra k^L(1|6) of vector fields
on the (1|6)-dimensional supercircle preserving the contact form, and the
series: the finite dimensional Lie superalgebra sh(0|2k) of special Hamiltonian
fields in 2k odd indeterminates, and the Kac--Moody version of sh(0|2k). Using
C_{2} we compute N. Shapovalov determinant for k^L(1|6) and sh(0|2k), and for
the Poisson superalgebras po(0|2k) associated with sh(0|2k). A. Shapovalov
described irreducible finite dimensional representations of po(0|n) and
sh(0|n); we generalize his result for Verma modules: give criteria for
irreducibility of the Verma modules over po(0|2k) and sh(0|2k)
Sylvester-t' Hooft generators of sl(n) and sl(n|n), and relations between them
Among the simple finite dimensional Lie algebras, only sl(n) possesses two
automorphisms of finite order which have no common nonzero eigenvector with
eigenvalue one. It turns out that these automorphisms are inner and form a pair
of generators that allow one to generate all of sl(n) under bracketing. It
seems that Sylvester was the first to mention these generators, but he used
them as generators of the associative algebra of all n times n matrices Mat(n).
These generators appear in the description of elliptic solutions of the
classical Yang-Baxter equation, orthogonal decompositions of Lie algebras, 't
Hooft's work on confinement operators in QCD, and various other instances. Here
I give an algorithm which both generates sl(n) and explicitly describes a set
of defining relations. For simple (up to center) Lie superalgebras, analogs of
Sylvester generators exist only for sl(n|n). The relations for this case are
also computed.Comment: 14 pages, 6 figure
Supergeometry and Quantum Field Theory, or: What is a Classical Configuration?
We discuss of the conceptual difficulties connected with the
anticommutativity of classical fermion fields, and we argue that the "space" of
all classical configurations of a model with such fields should be described as
an infinite-dimensional supermanifold M.
We discuss the two main approaches to supermanifolds, and we examine the
reasons why many physicists tend to prefer the Rogers approach although the
Berezin-Kostant-Leites approach is the more fundamental one. We develop the
infinite-dimensional variant of the latter, and we show that the functionals on
classical configurations considered in a previous paper are nothing but
superfunctions on M. We present a programme for future mathematical work, which
applies to any classical field model with fermion fields. This programme is
(partially) implemented in successor papers.Comment: 46 pages, LateX2E+AMSLaTe
Minimal deformations of the commutative algebra and the linear group GL(n)
We consider the relations of generalized commutativity in the algebra of
formal series , which conserve a tensor -grading and
depend on parameters . We choose the -preserving version of
differential calculus on . A new construction of the symmetrized tensor
product for -type algebras and the corresponding definition of minimally
deformed linear group and Lie algebra are proposed. We
study the connection of and with the special matrix
algebra \mbox{Mat} (n,Q) containing matrices with noncommutative elements.
A definition of the deformed determinant in the algebra \mbox{Mat} (n,Q) is
given. The exponential parametrization in the algebra \mbox{Mat} (n,Q) is
considered on the basis of Campbell-Hausdorf formula.Comment: 14 page
Fedosov and Riemannian supermanifolds
Generalizations of symplectic and metric structures for supermanifolds are
analyzed. Two types of structures are possible according to the even/odd
character of the corresponding quadratic tensors. In the even case one has a
very rich set of geometric structures: even symplectic supermanifolds (or,
equivalently, supermanifolds with non-degenerate Poisson structures), even
Fedosov supermanifolds and even Riemannian supermanifolds. The existence of
relations among those structures is analyzed in some details. In the odd case,
we show that odd Riemannian and Fedosov supermanifolds are characterized by a
scalar curvature tensor. However, odd Riemannian supermanifolds can only have
constant curvature.Comment: 20 page
Invariants of Lie algebras extended over commutative algebras without unit
We establish results about the second cohomology with coefficients in the
trivial module, symmetric invariant bilinear forms and derivations of a Lie
algebra extended over a commutative associative algebra without unit. These
results provide a simple unified approach to a number of questions treated
earlier in completely separated ways: periodization of semisimple Lie algebras
(Anna Larsson), derivation algebras, with prescribed semisimple part, of
nilpotent Lie algebras (Benoist), and presentations of affine Kac-Moody
algebras.Comment: v3: added a footnote on p.10 about a wrong derivation of the correct
statemen
Degenerate Odd Poisson Bracket on Grassmann Variables
A linear degenerate odd Poisson bracket (antibracket) realized solely on
Grassmann variables is presented. It is revealed that this bracket has at once
three nilpotent -like differential operators of the first, the second
and the third orders with respect to the Grassmann derivatives. It is shown
that these -like operators together with the Grassmann-odd nilpotent
Casimir function of this bracket form a finite-dimensional Lie superalgebra.Comment: 5 pages, LATEX. Corrections of misprints. The relation (23) is adde
On contractions of classical basic superalgebras
We define a class of orthosymplectic and unitary
superalgebras which may be obtained from and
by contractions and analytic continuations in a similar way as the
special linear, orthogonal and the symplectic Cayley-Klein algebras are
obtained from the corresponding classical ones. Casimir operators of
Cayley-Klein superalgebras are obtained from the corresponding operators of the
basic superalgebras. Contractions of and are regarded as
an examples.Comment: 15 pages, Late
An improved design of an inductive fault current limiter based on a superconducting cylinder
The paper deals with basic designs of a fault current limiter of the
transformer type which differ each other by the mutual location of a primary
winding and a superconducting short-circuited cylinder. Theoretical study of
the main parameters of the different designs is performed in the framework of
the critical state model and shows that the most effective is a design in which
the primary winding is divided to two sections with equal turn numbers. The
sections are placed inside and outside of the cylinder and connected in series.
Such arrangement of the windings leads to a substantial reduction of AC losses
in the superconducting cylinder, an increase of the activation current and a
decrease of the inductive reactance in the normal regime of a protected
circuit. The experimental results obtained on the laboratory model with a BSSCO
cylinder confirm the theoretical predictions.Comment: 17 pages, 9 figure
- …