342 research outputs found

    A Note on the Cosmological Dynamics in Finite-Range Gravity

    Full text link
    In this note we consider the homogeneous and isotropic cosmology in the finite-range gravity theory recently proposed by Babak and Grishchuk. In this scenario the universe undergoes late time accelerated expansion if both the massive gravitons present in the model are tachyons. We carry out the phase space analysis of the system and show that the late-time acceleration is an attractor of the model.Comment: RevTex, 4 pages, two figures, New references added, To appear in IJMP

    Asymptotic Infrared Fractal Structure of the Propagator for a Charged Fermion

    Full text link
    It is well known that the long-range nature of the Coulomb interaction makes the definition of asymptotic ``in'' and ``out'' states of charged particles problematic in quantum field theory. In particular, the notion of a simple particle pole in the vacuum charged particle propagator is untenable and should be replaced by a more complicated branch cut structure describing an electron interacting with a possibly infinite number of soft photons. Previous work suggests a Dirac propagator raised to a fractional power dependent upon the fine structure constant, however the exponent has not been calculated in a unique gauge invariant manner. It has even been suggested that the fractal ``anomalous dimension'' can be removed by a gauge transformation. Here, a gauge invariant non-perturbative calculation will be discussed yielding an unambiguous fractional exponent. The closely analogous case of soft graviton exponents is also briefly explored.Comment: Updated with a corrected sign error, longer discussion of fractal dimension, and more reference

    Weakly Interacting, Dilute Bose Gases in 2D

    Full text link
    This article surveys a number of theoretical problems and open questions in the field of two-dimensional dilute Bose gases with weak repulsive interactions. In contrast to three dimensions, in two dimensions the formation of long-range order is prohibited by the Bogoliubov-Hohenberg theorem, and Bose-Einstein condensation is not expected to be realized. Nevertheless, first experimental indications supporting the formation of the condensate in low dimensional systems have been recently obtained. This unexpected behaviour appears to be due to the non-uniformity, introduced into a system by the external trapping potential. Theoretical predictions, made for homogeneous systems, require therefore careful reexamination. We survey a number of popular theoretical treatments of the dilute weakly interacting Bose gas and discuss their regions of applicability. The possibility of Bose-Einstein condensation in a two-dimensional gas, the validity of perturbative t-matrix approximation and diluteness condition are issues that we discuss in detail.Comment: Survey, 25 pages RMP style, revised version, refs added, some changes made, accepted for publication in Rev. Mod. Phy

    Reduction and Realization in Toda and Volterra

    Full text link
    We construct a new symplectic, bi-hamiltonian realization of the KM-system by reducing the corresponding one for the Toda lattice. The bi-hamiltonian pair is constructed using a reduction theorem of Fernandes and Vanhaecke. In this paper we also review the important work of Moser on the Toda and KM-systems.Comment: 17 page

    Multitemporal generalization of the Tangherlini solution

    Full text link
    The n-time generalization of the Tangherlini solution [1] is considered. The equations of geodesics for the metric are integrated. For n=2n = 2 it is shown that the naked singularity is absent only for two sets of parameters, corresponding to the trivial extensions of the Tangherlini solution. The motion of a relativistic particle in the multitemporal background is considered. This motion is governed by the gravitational mass tensor. Some generalizations of the solution, including the multitemporal analogue of the Myers-Perry charged black hole solution, are obtained.Comment: 14 pages. RGA-CSVR-005/9

    Spinons, Solitons and Magnons in One-dimensional Heisenberg-Ising Antiferromagnets

    Full text link
    We calculate the excitation spectra for the one-dd Heisenberg-Ising antiferromagnets by expansions around the Ising limit. For S=1/2S=1/2, the calculated expansion coefficients for the spinon-spectra agree term by term with the solution of Johnson and McCoy. For S=1S=1, the solitons become gapless before the Heisenberg limit is reached, signalling a transition to the Haldane phase. By applying a staggered field we calculate the one-magnon spectra for the S=1S=1 Heisenberg chain. For S=3/2S=3/2 the quantum renormalization of the spin-wave spectra is calculated to be approximately 1.161.16.Comment: 4 pages, RevTex, 3 postscript figures, Latex file and figures have been uuencode

    Third quantization: a general method to solve master equations for quadratic open Fermi systems

    Full text link
    The Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n x 4n matrix, provided that all Lindblad bath operators are linear in the fermionic variables. The method is applied to the explicit construction of non-equilibrium steady states and the calculation of asymptotic relaxation rates in the far from equilibrium problem of heat and spin transport in a nearest neighbor Heisenberg XY spin 1/2 chain in a transverse magnetic field.Comment: 24 pages, with 8 eps figures - few minor corrections to the published version, e.g. anti-symmetrizing the matrix given by eq. (27

    Non-Abelian Bosonization and Haldane's Conjecture

    Full text link
    We study the long wavelength limit of a spin S Heisenberg antiferromagnetic chain. The fermionic Lagrangian obtained corresponds to a perturbed level 2S SU(2) Wess-Zumino-Witten model. This effective theory is then mapped into a compact U(1) boson interacting with Z_{2S} parafermions. The analysis of this effective theory allows us to show that when S is an integer there is a mass gap to all excitations, whereas this gap vanishes in the half-odd-integer spin case. This gives a field theory treatment of the so-called Haldane's conjecture for arbitrary values of the spin S.Comment: 9 pages REVTeX, no figure

    Correlation effects during liquid infiltration into hydrophobic nanoporous mediums

    Full text link
    Correlation effects arising during liquid infiltration into hydrophobic porous medium are considered. On the basis of these effects a mechanism of energy absorption at filling porous medium by nonwetting liquid is suggested. In accordance with this mechanism, the absorption of mechanical energy is a result expenditure of energy for the formation of menisci in the pores on the shell of the infinite cluster and expenditure of energy for the formation of liquid-porous medium interface in the pores belonging to the infinite cluster of filled pores. It was found that in dependences on the porosity and, consequently, in dependences on the number of filled pores neighbors, the thermal effect of filling can be either positive or negative and the cycle of infiltration-defiltration can be closed with full outflow of liquid. It can occur under certain relation between percolation properties of porous medium and the energy characteristics of the liquid-porous medium interface and the liquid-gas interface. It is shown that a consecutive account of these correlation effects and percolation properties of the pores space during infiltration allow to describe all experimental data under discussion

    Effective spacetime from multi-dimensional gravity

    Full text link
    We study the effective spacetimes in lower dimensions that can be extracted from a multidimensional generalization of the Schwarzschild-Tangherlini spacetimes derived by Fadeev, Ivashchuk and Melnikov ({\it Phys. Lett,} {\bf A 161} (1991) 98). The higher-dimensional spacetime has D=(4+n+m)D = (4 + n + m) dimensions, where nn and mm are the number of "internal" and "external" extra dimensions, respectively. We analyze the effective (4+n)(4 + n) spacetime obtained after dimensional reduction of the mm external dimensions. We find that when the mm extra dimensions are compact (i) the physics in lower dimensions is independent of mm and the character of the singularities in higher dimensions, and (ii) the total gravitational mass MM of the effective matter distribution is less than the Schwarzshild mass. In contrast, when the mm extra dimensions are large this is not so; the physics in (4+n)(4 + n) does explicitly depend on mm, as well as on the nature of the singularities in high dimensions, and the mass of the effective matter distribution (with the exception of wormhole-like distributions) is bigger than the Schwarzshild mass. These results may be relevant to observations for an experimental/observational test of the theory.Comment: A typo in Eq. (24) is fixe
    corecore