16 research outputs found
Are some brain injury patients improving more than ohers?
Predicting the evolution of individuals is a rather new mining task with applications in medicine. Medical researchers are interested in the progress of a disease and in the evolution of individuals subjected to treatment. We investigate the evolution of patients on the basis of medical tests before and during treatment after brain trauma: we want to understand how similar patients can become to healthy participants. We face two challenges. First, we have less information on healthy participants than on the patients. Second, the values of the medical tests for patients, even after treatment started, remain well-separated from those of healthy people; this is typical for neurodegenerative diseases, but also for further brain impairments. Our approach encompasses methods for modelling patient evolution and for predicting the health improvement of different patient subpopulations, dealing with the above challenges. We test our approach on a cohort of patients treated after brain trauma and a corresponding cohort of controls
Recommended from our members
Bias in data-driven artificial intelligence systems - An introductory survey
Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth. This article is categorized under: Commercial, Legal, and Ethical Issues > Fairness in Data Mining Commercial, Legal, and Ethical Issues > Ethical Considerations Commercial, Legal, and Ethical Issues > Legal Issues
Bias in data-driven artificial intelligence systems—An introductory survey
Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well-grounded in a legal frame. In this survey, we focus on data-driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth. This article is categorized under: Commercial, Legal, and Ethical Issues > Fairness in Data Mining Commercial, Legal, and Ethical Issues > Ethical Considerations Commercial, Legal, and Ethical Issues > Legal Issues
Tracing cluster transitions for different cluster types
Clustering algorithms detect groups of similar population members, like customers, news or genes. In many clustering applications the observed population evolves and changes over time, subject to internal and external factors. Detecting and understanding changes is important for decision support. In this work, we present the MONIC+ framework for cluster-type-specific transition modeling and detection. MONIC+ encompasses a typification of clusters and cluster-type-specific transition indicators, by exploiting cluster topology and cluster statistics for the transition detection process. Our experiments on both synthetic and real datasets demonstrate the usefulness and applicability of our framework
A Unified and Flexible Framework for Comparing Simple and Complex Patterns
One of the most important operations involving Data Mining patterns is computing their similarity. In this paper we present a general framework for comparing both simple and complex patterns, i.e., patterns built up from other patterns. Major features of our framework include the notion of structure and measure similarity, the possibility of managing multiple coupling types and ag-gregation logics, and the recursive definition of similarity for complex patterns
Athlete Jack Metcalfe shaking hands with a judge at an athletics competition, New South Wales, 20 December 1935, 2 [picture].
Title devised from accompanying information where available.; Part of the: Fairfax archive of glass plate negatives.; Fairfax number: 6313.; Condition: silvering.; Also available online at: http://nla.gov.au/nla.pic-vn6266833; Acquired from Fairfax Media, 2012
The horse in European history, 1550-1900
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Towards Trajectory Data Warehouses
Data warehouses have received the attention of the database community as a technology for integrating all sorts of transactional data, dispersed within organisations whose applications utilise either legacy (non-relational) or advanced relational database systems. Data warehouses form a technological framework for supporting decision-making processes by providing informational data. A data warehouse is defined as a subject-oriented, integrated, time-variant, non-volatile collection of data in support of management of decision-making process