300 research outputs found

    Maintenance of glucose-sensitive insulin secretion of cryopreserved human islets with University of Wisconsin solution and ascorbic acid-2 glucoside

    Get PDF
    Normal human islet cells are an ideal source for pancreas-targeted cell therapies, but the availability of human donor pancreata for islet isolation is severely limited. To effectively utilize such scarce donor organs for cell therapies, it is crucial to develop an excellent isolation, effective cryopreservation, and efficient gene transfer techniques for the transportation of isolated cells. In the present study, we investigate the effect of University of Wisconsin (UW) solution and ascorbic acid-2 glucoside (AA2G) on the cryopreservation of human islets. We also evaluate the gene transfer efficiency of a lentiviral vector expressing the E. coli LacZ gene, Lt-NLS/LacZ, in human islets. Human islets were isolated with a standard digestion method at the University of Alberta. Isolated islets were transported to Japan for 40 h and then subjected to cryopreservation experiments. The following preservation solutions were tested: UW solution with 100 mug/mL of AA2G, UW solution, 100% fetal bovine serum (FBS), and CMRL supplemented with 10% FBS. Following three months of cryopreservation, the islets were thawed and analyzed for viability, glucose-sensitive insulin secretion, proinsulin gene expression profile, and in vivo engraftment. The islets were also subjected to monolayer formation with 804G-cell-line-derived extracellular matrix (ECM), followed by Lt-NLS/LacZ transduction. The viability, morphology, glucose-sensitive insulin secretion, proinsulin gene expression, and monolayer formation efficiency of the thawed cryopreserved islets are significantly better maintained by the use of UW solution. When AA2G (100 mug/mL) is combined with UW, such parameters are further improved. The adequate engraftment of UW + AA2G-cryopreserved human islets is achieved in the liver of nude mice. Efficient Lt-NLS/LacZ transduction is identified in monolayered islets cryopreserved with UW solution with AA2G. The present work demonstrates that the combination of UW solution with AA2G (100 mug/mL) would be a useful cryopreservation means for human islets. Human islets monolayer-cultured with 804G-derived ECM are efficiently transduced with a lentiviral vector Lt-NLS/LacZ

    Magnetic Diagnostics of Magnetic Island in LHD

    Get PDF
    Characteristics of magnetic islands are investigated by magnetic diagnostics in the Large Helical Device (LHD). The structure of the magnetic island with m/n = 1/1 (where, m and n are poloidal and toroidal mode number, respectively) can be estimated from the perturbed magnetic field appearing when a magnetic island changes. To measure the toroidal profile of the perturbed magnetic field δb1 originating from the plasma, a toroidal array of magnetic flux loops is set up in the LHD. The toroidal profile of δb1 is then spatially Fourier decomposed to determine the amplitude of the n = 1 component, δb1n=1 and its phase, φn=1 which correspond the change of the island width and the toroidal position of the X-point of the island, respectively. Therefore, the information about the magnetic island structure can be obtained from δb1n=1 and φn=1. In case the island width becomes larger than the seed island, measurements show that δb1n=1 is non-zero and φn=1 is temporally constant. A non-zero δb1n=1 can also be observed when the island width becomes smaller than the seed island. In this case, the angle φn=1 shifts by about π[rad] compared with the increasing case and the δb1n=1 is limited to a certain value which corresponding to the magnetic field suppressing the seed island

    Behavior of a frustrated quantum spin chain with bond dimerization

    Full text link
    We clarified behavior of the excitation gap in a frustrated S=1/2 quantum spin chain with bond dimerization by using the numerical diagonalization of finite systems and a variational approach. The model interpolates between the independent dimer model and the S=1 spin chain by changing a strength of the dimerization. The energy gap is minimum at the fully-frustrated point, where a localized kink and a freely mobile anti-kink govern the low-lying excitations. Away from the point, a kink and an antikink form a bound state by an effective triangular potential between them. The consequential gap enhancement and the localization length of the bound state is obtained exactly in the continuous limit. The gap enhancement obeys a power law with exponent 2/3. The method and the obtained results are common to other frustrated double spin-chain systems, such as the one-dimensional J_1 - J_2 model, or the frustrated ladder model.Comment: 11 pages, REVTeX, 8 figures in eps-fil

    Extension and its characteristics of ECRH plasma in the LHD

    Full text link
    One of the main objectives of the LHD is to extend the plasma confinement database for helical systems and to demonstrate such extended plasma confinement properties to be sustained in steady state. Among the various plasma parameter regimes, the study of confinement properties in the collisionless regime is of particular importance. Electron cyclotron resonance heating (ECRH) has been extensively used for these confinement studies of the LHD plasma from the initial operation. The system optimizations including the modification of the transmission and antenna system are performed with the special emphasis on the local heating properties. As the result, central electron temperature of more than 10 keV with the electron density of 0.6 x 1019^{19} m−3^{-3} is achieved near the magnetic axis. The electron temperature profile is characterized by a steep gradient similar to those of an internal transport barrier observed in tokamaks and stellarators. 168 GHz ECRH system demonstrated efficient heating at over the density more than 1.0 x 1020^{20} m−3^{-3}. CW ECRH system is successfully operated to sustain 756 s discharge.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France
    • …
    corecore