3,792 research outputs found

    Effects of random environment on a self-organized critical system: Renormalization group analysis of a continuous model

    Full text link
    We study effects of random fluid motion on a system in a self-organized critical state. The latter is described by the continuous stochastic model, proposed by Hwa and Kardar [{\it Phys. Rev. Lett.} {\bf 62}: 1813 (1989)]. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form δ(tt)/kd1+ξ\propto \delta(t-t') / k_{\bot}^{d-1+\xi}, where k=kk_{\bot}=|{\bf k}_{\bot}| and k{\bf k}_{\bot} is the component of the wave vector, perpendicular to a certain preferred direction -- the dd-dimensional generalization of the ensemble introduced by Avellaneda and Majda [{\it Commun. Math. Phys.} {\bf 131}: 381 (1990)]. Using the field theoretic renormalization group we show that, depending on the relation between the exponent ξ\xi and the spatial dimension dd, the system reveals different types of large-scale, long-time scaling behaviour, associated with the three possible fixed points of the renormalization group equations. They correspond to ordinary diffusion, to passively advected scalar field (the nonlinearity of the Hwa--Kardar model is irrelevant) and to the "pure" Hwa--Kardar model (the advection is irrelevant). For the special choice ξ=2(4d)/3\xi=2(4-d)/3 both the nonlinearity and the advection are important. The corresponding critical exponents are found exactly for all these cases

    Electronic structure of charge-ordered Fe3O4 from calculated optical, megneto-optical Kerr effect, and O K-edge x-ray absorption spectra

    Full text link
    The electronic structure of the low-temperature (LT) monoclinic magnetite, Fe3O4, is investigated using the local spin density approximation (LSDA) and the LSDA+U method. The self-consistent charge ordered LSDA+U solution has a pronounced [001] charge density wave character. In addition, a minor [00{1/2}] modulation in the phase of the charge order (CO) also occurs. While the existence of CO is evidenced by the large difference between the occupancies of the minority spin t_{2g} states of ``2+'' and ``3+'' Fe_B cations, the total 3d charge disproportion is small, in accord with the valence-bond-sum analysis of structural data. Weak Fe orbital moments of ~0.07 mB are obtained from relativistic calculations for the CO phase which is in good agreement with recent x-ray magnetic circular dichroism measurements. Optical, magneto-optical Kerr effect, and O K-edge x-ray absorption spectra calculated for the charge ordered LSDA+U solution are compared to corresponding LSDA spectra and to available experimental data. Reasonably good agreement between the theoretical and experimental spectra supports the relevance of the CO solution obtained for the monoclinic LT phase. The results of calculations of effective exchange coupling constants between Fe spin magnetic moments are also presented.Comment: 32 pages, 10 figure

    Charge order in Fe2OBO3: An LSDA+U study

    Get PDF
    Charge ordering in the low-temperature monoclinic structure of iron oxoborate (Fe2OBO3) is investigated using the local spin density approximation (LSDA)+U method. While the difference between t_{2g} minority occupancies of Fe^{2+} and Fe^{3+} cations is large and gives direct evidence for charge ordering, the static "screening" is so effective that the total 3d charge separation is rather small. The occupied Fe^{2+} and Fe^{3+} cations are ordered alternately within the chain which is infinite along the a-direction. The charge order obtained by LSDA+U is consistent with observed enlargement of the \beta angle. An analysis of the exchange interaction parameters demonstrates the predominance of the interribbon exchange interactions which determine the whole L-type ferrimagnetic spin structure.Comment: 7 pages, 8 figure

    Charge order and spin-singlet pairs formation in Ti4O7

    Full text link
    Charge ordering in the low-temperature triclinic structure of titanium oxide (Ti4O7) is investigated using the local density approximation (LDA)+U method. Although the total 3d charge separation is rather small, an orbital order parameter defined as the difference between t2g occupancies of Ti3+^{3+} and Ti4+^{4+} cations is large and gives direct evidence for charge ordering. Ti 4s and 4p states make a large contribution to the static "screening" of the total 3d charge difference. This effective charge screening leads to complete loss of the disproportionation between the charges at 3+ and 4+ Ti sites. The occupied t2g states of Ti3+^{3+} cations are predominantly of dxyd_{xy} character and form a spin-singlet molecular orbital via strong direct antiferromagnetic exchange coupling between neighboring Ti(1) and Ti(3) sites, whereas the role of superexchange is found to be negligible.Comment: 6 pages, 4 figure
    corecore