43 research outputs found
Multiple pathways mediate the effects of climate change on maternal reproductive traits in a red deer population
Temporal changes in phenological traits arising as a consequence of recent rapid environmental change have been widely demonstrated in animal populations. Increasingly, studies are seeking to understand the impact of changes in such traits on individual fitness and population dynamics, with the ultimate aim of predicting population persistence or extinction under different climate scenarios. Here, we examined the effects of environmental change on maternal reproductive traits in a wild population of red deer (Cervus elaphus) and sought to explain why, despite a rapid advance in offspring birth dates, we observed no apparent consequences for offspring fitness. By using path analysis, we identified both direct and indirect paths along which changes in environmental conditions affected birth date, birth mass, juvenile survival, and female fecundity. In general, warmer temperatures were associated with earlier birth dates and greater birth mass, and higher rainfall was associated with reduced juvenile survival and reduced female fecundity. We also examined concurrent effects of population density, maternal age, and reproductive history, and found that temporal stasis in average trait values, at least in part, could be explained by antagonistic roles of direct and indirect effects of changing climate and increasing population density. Identification of the many mechanisms that contribute to the dynamics of phenotypic traits is challenging; this study demonstrates the need to consider both climatic and demographic variation in order to understand the fitness consequences of changes in phenological traits
Efficient Hadronic Operators in Lattice Gauge Theory
We study operators to create hadronic states made of light quarks in quenched
lattice gauge theory. We construct non-local gauge-invariant operators which
provide information about the spatial extent of the ground state and excited
states. The efficiency of the operators is shown by looking at the wave
function of the first excited state, which has a node as a function of the
spatial extent of the operator. This allows one to obtain an uncontaminated
ground state for hadrons.Comment: 18 pages, Latex text, followed by 11 postscript figures in
self-unpacking file. Also available at
ftp://suna.amtp.liv.ac.uk/pub/cmi/wavefn
Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum
Hydrogen embrittlement is a complex phenomenon, involving several length- and timescales, that affects a large class of metals. It can significantly reduce the ductility and load-bearing capacity and cause cracking and catastrophic brittle failures at stresses below the yield stress of susceptible materials. Despite a large research effort in attempting to understand the mechanisms of failure and in developing potential mitigating solutions, hydrogen embrittlement mechanisms are still not completely understood. There are controversial opinions in the literature regarding the underlying mechanisms and related experimental evidence supporting each of these theories. The aim of this paper is to provide a detailed review up to the current state of the art on the effect of hydrogen on the degradation of metals, with a particular focus on steels. Here, we describe the effect of hydrogen in steels from the atomistic to the continuum scale by reporting theoretical evidence supported by quantum calculation and modern experimental characterisation methods, macroscopic effects that influence the mechanical properties of steels and established damaging mechanisms for the embrittlement of steels. Furthermore, we give an insight into current approaches and new mitigation strategies used to design new steels resistant to hydrogen embrittlement
Management system for optimizing public transport networks: GPS record
As cities continue to grow in size and population, the design of public transport networks becomes complicated, given the wide diversity in the origins and destinations of users [1], as well as the saturation of vehicle infrastructure in large cities despite their attempts to adapt it according to population distribution. This indicates that, in order to reduce users’ travel time, it is necessary to implement alternative road solutions to the use of cars, increasing investment in public transportation [2, 3] by conducting a comprehensive analysis of the state of transportation. This situation has made appear the solutions and development oriented to transportation based on Internet of Things (IoT) which allows, in a first stage, monitoring of public transport systems, in order to optimize the deployment of transport units and thus reduce the time of transfer of users through the cities [4]. These solution proposals are focused on information collected from user resources (data collected through smart phones) to create a common database [5]. The present study proposes the development of an intelligent monitoring and management system for public transportation networks using a hybrid communication architecture based on wireless node networks using IPv6 and cellular networks (LTE, LTE-M)
Female sexual preferences toward conspecific and hybrid male mating calls in two species of polygynous deer, Cervus elaphus and C. nippon
The behavioral processes at the basis of hybridization and introgression are understudied in terrestrial mammals. We use a unique model to test the role of sexual signals as a reproductive barrier to introgression by investigating behavioral responses to male sexual calls in estrous females of two naturally allopatric but reproductively compatible deer species, red deer and sika deer. Previous studies demonstrated asymmetries in acoustic species discrimination between these species: most but not all female red deer prefer conspecific over sika deer male calls while female sika deer exhibit no preference differences. Here, we extend this examination of acoustic species discrimination to the role of male sexual calls in introgression between parent species and hybrids. Using two-speaker playback experiments, we compared the preference responses of estrous female red and sika deer to male sexual calls from conspecifics versus red × sika hybrids. These playbacks simulate early secondary contact between previously allopatric species after hybridization has occurred. Based on previous conspecific versus heterospecific playbacks, we predicted that most female red deer would prefer conspecific calls while female sika deer would show no difference in their preference behaviors toward conspecific and hybrid calls. However, results show that previous asymmetries did not persist as neither species exhibited more preferences for conspecific over hybrid calls. Thus, vocal behavior is not likely to deter introgression between these species during the early stages of sympatry. On a wider scale, weak discrimination against hybrid sexual signals could substantially contribute to this important evolutionary process in mammals and other taxa
Assessing the Quality of Origin-Destination Matrices Derived from Activity Travel Surveys: Results from a Monte Carlo Experiment
peer reviewedTo support policy makers combating travel-related externalities, quality data are required for the design and management of transportation systems and policies. To this end, much money has been spent on collecting household- and person-based data. The main objective of this paper is to assess the quality of origin-destination (O-D) matrices derived from household activity travel surveys. To this purpose, a Monte Carlo experiment is set up to estimate the precision of O-D matrices given different sampling rates. The Belgian 2001 census data, containing work- and school-related travel information for all 10,296,350 residents, are used for the experiment. For different sampling rates, 2,000 random stratified samples are drawn. For each sample, three O-D matrices are composed: one at the municipality level, one at the district level, and one at the provincial level. The correspondence between the samples and the population is assessed by using the mean absolute percentage error (MAPE) and a censored version of the MAPE (MCAPE). The results show that no accurate O-D matrices can be derived directly from these surveys. Only when half of the population is queried is an acceptable O-D matrix obtained at the provincial level. Therefore, use of additional information to grasp better the behavioral realism underlying destination choices and collection of information about particular O-D pairs by means of vehicle intercept surveys are recommended. In addition, results suggest using the MCAPE next to traditional criteria to examine dissimilarities between different O-D matrices. An important avenue for further research is the investigation of the effect of sampling proportions on travel demand model outcomes