2,117 research outputs found

    Effect of Magnetization Inhomogeneity on Magnetic Microtraps for Atoms

    Get PDF
    We report on the origin of fragmentation of ultracold atoms observed on a permanent magnetic film atom chip. A novel technique is used to characterize small spatial variations of the magnetic field near the film surface using radio frequency spectroscopy of the trapped atoms. Direct observations indicate the fragmentation is due to a corrugation of the magnetic potential caused by long range inhomogeneity in the film magnetization. A model which takes into account two-dimensional variations of the film magnetization is consistent with the observations.Comment: 4 pages, 4 figure

    Precision measurements of s-wave scattering lengths in a two-component Bose-Einstein condensate

    Full text link
    We use collective oscillations of a two-component Bose-Einstein condensate (2CBEC) of \Rb atoms prepared in the internal states ∣1⟩≡∣F=1,mF=−1⟩\ket{1}\equiv\ket{F=1, m_F=-1} and ∣2⟩≡∣F=2,mF=1⟩\ket{2}\equiv\ket{F=2, m_F=1} for the precision measurement of the interspecies scattering length a12a_{12} with a relative uncertainty of 1.6×10−41.6\times 10^{-4}. We show that in a cigar-shaped trap the three-dimensional (3D) dynamics of a component with a small relative population can be conveniently described by a one-dimensional (1D) Schr\"{o}dinger equation for an effective harmonic oscillator. The frequency of the collective oscillations is defined by the axial trap frequency and the ratio a12/a11a_{12}/a_{11}, where a11a_{11} is the intra-species scattering length of a highly populated component 1, and is largely decoupled from the scattering length a22a_{22}, the total atom number and loss terms. By fitting numerical simulations of the coupled Gross-Pitaevskii equations to the recorded temporal evolution of the axial width we obtain the value a12=98.006(16) a0a_{12}=98.006(16)\,a_0, where a0a_0 is the Bohr radius. Our reported value is in a reasonable agreement with the theoretical prediction a12=98.13(10) a0a_{12}=98.13(10)\,a_0 but deviates significantly from the previously measured value a12=97.66 a0a_{12}=97.66\,a_0 \cite{Mertes07} which is commonly used in the characterisation of spin dynamics in degenerate \Rb atoms. Using Ramsey interferometry of the 2CBEC we measure the scattering length a22=95.44(7) a0a_{22}=95.44(7)\,a_0 which also deviates from the previously reported value a22=95.0 a0a_{22}=95.0\,a_0 \cite{Mertes07}. We characterise two-body losses for the component 2 and obtain the loss coefficients γ12=1.51(18)×10−14cm3/s{\gamma_{12}=1.51(18)\times10^{-14} \textrm{cm}^3/\textrm{s}} and γ22=8.1(3)×10−14cm3/s{\gamma_{22}=8.1(3)\times10^{-14} \textrm{cm}^3/\textrm{s}}.Comment: 11 pages, 8 figure

    Incoherent pion photoproduction on the deuteron in the first resonance region

    Get PDF
    Incoherent pion photoproduction on the deuteron is studied in the first resonance region. The unpolarized cross section, the beam asymmetry, and the vector and tensor target asymmetries are calculated in the framework of a diagrammatic approach. Pole diagrams and one-loop diagrams with NNNN scattering in the final state are taken into account. An elementary operator for pion photoproduction on the nucleon is taken in various on-shell forms and calculated using the SAID and MAID multipole analyses. Model dependence of the obtained results is discussed in some detail. A comparison with predictions of other works is given. Although a reasonable description of many available experimental data on the unpolarized total and differential cross sections and photon asymmetry has been achieved, in some cases a significant disagreement between the theory and experiment has been found. Invoking known information on the reactions γd→π0d\gamma d\to\pi^0 d and γd→np\gamma d\to np we predict the total photoabsorption cross section for deuterium. We find that our values strongly overestimate experimental data in the vicinity of the Δ\Delta peak.Comment: 22 pages, 23 figure

    Asymmetric double-well potential for single atom interferometry

    Full text link
    We consider the evolution of a single-atom wavefunction in a time-dependent double-well interferometer in the presence of a spatially asymmetric potential. We examine a case where a single trapping potential is split into an asymmetric double well and then recombined again. The interferometer involves a measurement of the first excited state population as a sensitive measure of the asymmetric potential. Based on a two-mode approximation a Bloch vector model provides a simple and satisfactory description of the dynamical evolution. We discuss the roles of adiabaticity and asymmetry in the double-well interferometer. The Bloch model allows us to account for the effects of asymmetry on the excited state population throughout the interferometric process and to choose the appropriate splitting, holding and recombination periods in order to maximize the output signal. We also compare the outcomes of the Bloch vector model with the results of numerical simulations of the multi-state time-dependent Schroedinger equation.Comment: 9 pages, 6 figure

    Semiclassical correlators of three states with large S^5 charges in string theory in AdS_5 x S^5

    Full text link
    We consider semiclassical computation of 3-point correlation functions of (BPS or non-BPS) string states represented by vertex operators carrying large charges in S5. We argue that the AdS5 part of the construction of relevant semiclassical solution involves the two basic ingredients: (i) configuration of three glued geodesics in AdS2 suggested by Klose and McLoughlin in arXiv:1106.0495 and (ii) a particular Schwarz-Christoffel map of the 3-geodesic solution in cylindrical (tau, sigma) domain into the complex plane with three marked points. This map is constructed using the expression for the AdS2 string stress tensor which is uniquely determined by the 3 scaling dimensions as noted by Janik and Wereszczynski in arXiv:1109.6262 (our solution, however, is different from theirs). We also find the S5 part of the solution and thus the full expression for the semiclassical part of the 3-point correlator for several examples: extremal and non-extremal correlators of BPS states and a particular correlator of "small" circular spinning strings in S3 part of S5. We demonstrate that for the BPS correlators the results agree with the large charge limit of the corresponding supergravity and free gauge theory expressions.Comment: 43 pages, 4 figures; v2: minor corrections; v3: comments added at the end of section 3 and in section 5; v4: minor corrections; v5: discussion in subsection 3.3 correcte

    Mean-field dynamics of two-mode Bose-Einstein condensates in highly anisotropic potentials: Interference, dimensionality, and entanglement

    Full text link
    We study the mean-field dynamics and the reduced-dimension character of two-mode Bose-Einstein condensates (BECs) in highly anisotropic traps. By means of perturbative techniques, we show that the tightly confined (transverse) degrees of freedom can be decoupled from the dynamical equations at the expense of introducing additional effective three-body, attractive, intra- and inter-mode interactions into the dynamics of the loosely confined (longitudinal) degrees of freedom. These effective interactions are mediated by changes in the transverse wave function. The perturbation theory is valid as long as the nonlinear scattering energy is small compared to the transverse energy scales. This approach leads to reduced-dimension mean-field equations that optimally describe the evolution of a two-mode condensate in general quasi-1D and quasi-2D geometries. We use this model to investigate the relative phase and density dynamics of a two-mode, cigar-shaped 87^{87}Rb BEC. We study the relative-phase dynamics in the context of a nonlinear Ramsey interferometry scheme, which has recently been proposed as a novel platform for high-precision interferometry. Numerical integration of the coupled, time-dependent, three-dimensional, two-mode Gross-Pitaevskii equations for various atom numbers shows that this model gives a considerably more refined analytical account of the mean-field evolution than an idealized quasi-1D description.Comment: 35 pages, 10 figures. Current version is as publishe
    • …
    corecore