197 research outputs found

    On the detectability of quantum spacetime foam with gravitational-wave interferometers

    Get PDF
    We discuss a recent provocative suggestion by Amelino-Camelia and others that classical spacetime may break down into ``quantum foam'' on distance scales many orders of magnitude larger than the Planck length, leading to effects which could be detected using large gravitational wave interferometers. This suggestion is based on a quantum uncertainty limit obtained by Wigner using a quantum clock in a gedanken timing experiment. Wigner's limit, however, is based on two unrealistic and unneccessary assumptions: that the clock is free to move, and that it does not interact with the environment. Removing either of these assumptions makes the uncertainty limit invalid, and removes the basis for Amelino-Camelia's suggestion.Comment: Submitted to Phys. Lett.

    Geometrization of the Gauge Connection within a Kaluza-Klein Theory

    Full text link
    Within the framework of a Kaluza-Klein theory, we provide the geometrization of a generic (Abelian and non-Abelian) gauge coupling, which comes out by choosing a suitable matter fields dependence on the extra-coordinates. We start by the extension of the Nother theorem to a multidimensional spacetime being the direct sum of a 4-dimensional Minkowski space and of a compact homogeneous manifold (whose isometries reflect the gauge symmetry); we show, how on such a ``vacuum'' configuration, the extra-dimensional components of the field momentum correspond to the gauge charges. Then we analyze the structure of a Dirac algebra as referred to a spacetime with the Kaluza-Klein restrictions and, by splitting the corresponding free-field Lagrangian, we show how the gauge coupling terms outcome.Comment: 10 pages, no figure, to appear on Int. Journ. Theor. Phy

    Scenario of inflationary cosmology from the phenomenological Λ\Lambda models

    Full text link
    Choosing the three phenomenological models of the dynamical cosmological term Λ\Lambda, viz., Λ(a˙/a)2\Lambda \sim (\dot a/a)^2, Λa¨/a\Lambda \sim {\ddot a/a} and Λρ\Lambda \sim \rho where aa is the cosmic scale factor, it has been shown by the method of numerical analysis that the three models are equivalent for the flat Universe k=0k=0. The evolution plots for dynamical cosmological term Λ\Lambda vs. time tt and also the cosmic scale factor aa vs. tt are drawn here for k=0,+1k=0, +1. A qualitative analysis has been made from the plots which supports the idea of inflation and hence expanding Universe.Comment: 12 latex pages with 12 figures; Replaced with the revised version; Accepeted for `J. Non-lin. Frac. Phen. Sci. Engg.

    Geometrization of the electro-weak model bosonic component

    Full text link
    In this work we develop a geometrical unification theory for gravity and the electro-weak model in a Kaluza-Klein approach; in particular, from the curvature dimensional reduction Einstein-Yang-Mills action is obtained. We consider two possible space-time manifolds: 1)V4S1S2V^{4}\otimes S^{1}\otimes S^{2} where isospin doublets are identified with spinors; 2) V4S1S3V^{4}\otimes S^{1}\otimes S^{3} in which both quarks and leptons doublets can be recast into the same spinor, such that the equal number of quark generations and leptonic families is explained. Finally a self-interacting complex scalar field is introduced to reproduce the spontaneous symmetry breaking mechanism; in this respect, at the end we get an Higgs fields whose two components have got opposite hypercharges.Comment: 15 pages, no figures, to appear on Int. Jour. of Theor. Phy

    Inhomogeneous Universe Models with Varying Cosmological Term

    Get PDF
    The evolution of a class of inhomogeneous spherically symmetric universe models possessing a varying cosmological term and a material fluid, with an adiabatic index either constant or not, is studied.Comment: 11 pages Latex. No figures. To be published in the GRG Journa

    The bang of a white hole in the early universe from a 6D vacuum state: Origin of astrophysical spectrum

    Full text link
    Using a previously introduced model in which the expansion of the universe is driven by a single scalar field subject to gravitational attraction induced by a white hole during the expansion (from a 6D vacuum state), we study the origin of squared inflaton fluctuations spectrum on astrophysical scales.Comment: Final version to be published in Eur. Phys. J.

    Causal Bulk Viscous Dissipative Isotropic Cosmologies with Variable Gravitational and Cosmological Constants

    Get PDF
    We consider the evolution of a flat Friedmann-Robertson-Walker Universe, filled with a causal bulk viscous cosmological fluid, in the presence of variable gravitational and cosmological constants. The basic equation for the Hubble parameter, generalizing the evolution equation in the case of constant gravitational coupling and cosmological term, is derived, under the supplementary assumption that the total energy of the Universe is conserved. By assuming that the cosmological constant is proportional to the square of the Hubble parameter and a power law dependence of the bulk viscosity coefficient, temperature and relaxation time on the energy density of the cosmological fluid, two classes of exact solutions of the field equations are obtained. In the first class of solutions the Universe ends in an inflationary era, while in the second class of solutions the expansion of the Universe is non-inflationary for all times. In both models the cosmological "constant" is a decreasing function of time, while the gravitational "constant" increases in the early period of evolution of the Universe, tending in the large time limit to a constant value.Comment: 14 pages, 15 figure

    Inducing the cosmological constant from five-dimensional Weyl space

    Full text link
    We investigate the possibility of inducing the cosmological constant from extra dimensions by embedding our four-dimensional Riemannian space-time into a five-dimensional Weyl integrable space. Following approach of the induced matter theory we show that when we go down from five to four dimensions, the Weyl field may contribute both to the induced energy-tensor as well as to the cosmological constant, or more generally, it may generate a time-dependent cosmological parameter. As an application, we construct a simple cosmological model which has some interesting properties.Comment: 7 page

    Induced inflation from a 5D purely kinetic scalar field formalism on warped product spaces

    Full text link
    Considering a separable and purely kinetic 5D scalar field on a warped product metric background we propose a new and more general approach for inducing 4D scalar potentials on a 4D constant foliation of the 5D space-time. We obtain an induced potential for a true 4D scalar field instead of a potential for an effective 4D scalar field. In this formalism we can recover the usual 4D inflationary formalism with a geometrically induced inflationary potential. In addition the quantum confinement of the inflaton modes is obtained naturally from the model for at least a class of warping factors. Besides the 4D inflationary physics that results of this formalism is independent of the 4D-hypersurface chosen.Comment: 8 pages Accepted for publication in European Physical Journal

    Graviton production from extra dimensions

    Get PDF
    Graviton production due to collapsing extra dimensions is studied. The momenta lying in the extra dimensions are taken into account. A DD-dimensional background is matched to an effectively four-dimensional standard radiation dominated universe. Using observational constraints on the present gravitational wave spectrum, a bound on the maximal temperature at the beginning of the radiation era is derived. This expression depends on the number of extra dimensions, as well as on the DD-dimensional Planck mass. Furthermore, it is found that the extra dimensions have to be large.Comment: LaTeX file, 14 pages, 4 figure
    corecore