974 research outputs found

    On the "spin-freezing" mechanism in underdoped superconducting cuprates

    Full text link
    The letter deals with the spin-freezing process observed by means of NMR-NQR relaxation or by muon spin rotation in underdoped cuprate superconductors. This phenomenon, sometimes referred as coexistence of antiferromagnetic and superconducting order parameters, is generally thought to result from randomly distributed magnetic moments related to charge inhomogeneities (possibly stripes) which exhibit slowing down of their fluctuations on cooling below Tc_c . Instead, we describe the experimental findings as due to fluctuating, vortex-antivortex, orbital currents state coexisting with d-wave superconducting state. A direct explanation of the experimental results, in underdoped Y1βˆ’x_{1-x}Cax_xBa2_2Cu3_3O6.1_{6.1} and La2βˆ’x_{2-x}Sr%_xCuO4_4, is thus given in terms of freezing of orbital current fluctuations

    Dynamical magnetic susceptibility in the lamellar cobaltate superconductor Na_xCoO_2β‹…y\cdot yH_2O

    Full text link
    We systematically analyze the influence of the superconducting gap symmetry and the electronic structure on the dynamical spin susceptibility in superconducting Na_xCoO_2β‹…y\cdot yH_2O within a three different models: the single a_{1g}-band model with nearest-neighbor hoppings, the realistic three-band t_{2g}-model with, and without e'_g pockets present at the Fermi surface. We show that the magnetic response in the normal state is dominated by the incommensurate antiferromagnetic spin density wave fluctuations at large momenta in agreement with experimental temperature dependence of the spin-lattice relaxation rate. Also, we demonstrate that the presence or the absence of the e'_g-pockets at the Fermi surface does not affect significantly this conclusion. In the superconducting state our results for d_{x^2-y^2}- or d_{xy}-wave symmetries of the superconducting order parameter are consistent with experimental data and exclude nodeless dx2βˆ’y2+idxyd_{x^2-y^2} + id_{xy}-wave symmetry. We further point out that the spin-resonance peak proposed earlier is improbable for the realistic band structure of Na_xCoO_2β‹…y\cdot yH_2O. Moreover, even if present the resonance peak is confined to the antiferromagnetic wave vector and disappears away from it.Comment: Published version, PACS: 74.70.-b; 75.40.Gb; 74.20.Rp; 74.25.J

    Network patterns and strength of orbital currents in layered cuprates

    Full text link
    In a frame of the tβˆ’Jβˆ’Gt-J-G model we derive the microscopical expression for the circulating orbital currents in layered cuprates using the anomalous correlation functions. In agreement with ΞΌ\mu-on spin relaxation (ΞΌ\muSR), nuclear quadrupolar resonance (NQR) and inelastic neutron scattering(INS) experiments in YBa2_2Cu3_3O6+x_{6+x} we successfully explain the order of magnitude and the monotonous increase of the {\it internal} magnetic fields resulting from these currents upon cooling. However, the jump in the intensity of the magnetic fields at Tc_c reported recently seems to indicate a non-mean-field feature in the coexistence of current and superconducting states and the deviation of the extended charge density wave vector instability from its commensurate value {\bf Q}β‰ˆ(Ο€,Ο€\approx(\pi,\pi) in accordance with the reported topology of the Fermi surface

    Superconducting phase diagram of itinerant antiferromagnets

    Full text link
    We study the phase diagram of the Hubbard model in the weak-coupling limit for coexisting spin-density-wave order and spin-fluctuation-mediated superconductivity. Both longitudinal and transverse spin fluctuations contribute significantly to the effective interaction potential, which creates Cooper pairs of the quasi-particles of the antiferromagnetic metallic state. We find a dominant dx2βˆ’y2d_{x^2-y^2}-wave solution in both electron- and hole-doped cases. In the quasi-spin triplet channel, the longitudinal fluctuations give rise to an effective attraction supporting a pp-wave gap, but are overcome by repulsive contributions from the transverse fluctuations which disfavor pp-wave pairing compared to dx2βˆ’y2d_{x^2-y^2}. The sub-leading pair instability is found to be in the gg-wave channel, but complex admixtures of dd and gg are not energetically favored since their nodal structures coincide. Inclusion of interband pairing, in which each fermion in the Cooper pair belongs to a different spin-density-wave band, is considered for a range of electron dopings in the regime of well-developed magnetic order. We demonstrate that these interband pairing gaps, which are non-zero in the magnetic state, must have the same parity under inversion as the normal intraband gaps. The self-consistent solution to the full system of five coupled gap equations give intraband and interband pairing gaps of dx2βˆ’y2d_{x^2-y^2} structure and similar gap magnitude. In conclusion, the dx2βˆ’y2d_{x^2-y^2} gap dominates for both hole and electron doping inside the spin-density-wave phase.Comment: 14 pages, 9 figure
    • …
    corecore