676 research outputs found
A possibility for precise Weinberg angle measurement in centrosymmetric crystals with axis
We demonstrate that parity nonconserving interaction due to the nuclear weak
charge Q_W leads to nonlinear magnetoelectric effect in centrosymmetric
paramagnetic crystals. It is shown that the effect exists only in crystals with
special symmetry axis k. Kinematically, the correlation (correction to energy)
has the form H_PNC ~ Q_W (E,[B,k])(B,k), where B and E are the external
magnetic and electric fields. This gives rise to magnetic induction M_PNC ~ Q_W
{k(B,[k,E]) + [k,E](B,k)}. To be specific we consider rare-earth trifluorides
and, in particular, dysprosium trifluoride which looks the most suitable for
experiment. We estimate the optimal temperature for the experiment to be of a
few kelvin. For the magnetic field B = 1 T and the electric field E = 10 kV/cm,
the expected magnetic induction is 4 \pi M_PNC = 0.5 * 10^-11 G, six orders of
magnitude larger than the best sensitivity currently under discussion.
Dysprosium has several stable isotopes, and so, comparison of the effects for
different isotopes provides possibility for precise measurement of the Weinberg
angle.Comment: 7 pages, 1 figure, 2 tables; version 2 - added discussion of neutron
distribution uncertaint
Time-reversal violating generation of static magnetic and electric fields and a problem of electric dipole moment measurement
It is shown that in the experiments for search of the EDM of an electron
(atom, molecule) the T-odd magnetic moment induced by an electric field and the
T-odd electric dipole moment induced by a magnetic field will be also measured.
It is discussed how to distinguish these contributions.Comment: Latex, 5 pages with 1 Postscript figur
Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling
Nonstationary pump-probe interaction between short laser pulses propagating
in a resonant optically dense coherent medium is considered. A special
attention is paid to the case, where the density of two-level particles is high
enough that a considerable part of the energy of relatively weak external
laser-fields can be coherently absorbed and reemitted by the medium. Thus, the
field of medium reaction plays a key role in the interaction processes, which
leads to the collective behavior of an atomic ensemble in the strongly coupled
light-matter system. Such behavior results in the fast excitation interchanges
between the field and a medium in the form of the optical ringing, which is
analogous to polariton beating in the solid-state optics. This collective
oscillating response, which can be treated as successive beats between light
wave-packets of different group velocities, is shown to significantly affect
propagation and amplification of the probe field under its nonlinear
interaction with a nearly copropagating pump pulse. Depending on the probe-pump
time delay, the probe transmission spectra show the appearance of either
specific doublet or coherent dip. The widths of these features are determined
by the density-dependent field-matter coupling coefficient and increase during
the propagation. Besides that, the widths of the coherent features, which
appear close to the resonance in the broadband probe-spectrum, exceed the
absorption-line width, since, under the strong-coupling regime, the frequency
of the optical ringing exceeds the rate of incoherent relaxation. Contrary to
the stationary strong-field effects, the density- and coordinate-dependent
transmission spectra of the probe manifest the importance of the collective
oscillations and cannot be obtained in the framework of the single-atom model.Comment: 10 pages, 8 figures, to be published in Phys. Rev.
Two-dimensional magnetoexcitons in the presence of spin-orbit coupling
We study theoretically the effect of spin-orbit coupling on quantum well
excitons in a strong magnetic field. We show that, in the presence of an
in-plane field component, the excitonic absorption spectrum develops a
double-peak structure due to hybridization of bright and dark magnetoexcitons.
If the Rashba and Dresselhaus spin-orbit constants are comparable, the
magnitude of splitting can be tuned in a wide interval by varying the azimuthal
angle of the in-plane field. We also show that the interplay between spin-orbit
and Coulomb interactions leads to an anisotropy of exciton energy dispersion in
the momentum plane. The results suggest a way for direct optical measurements
of spin-orbit parameters.Comment: 9 pages, 6 figure
Causal signal transmission by quantum fields. IV: The causal Wick theorem
Wick's theorem in the Schwinger-Perel-Keldysh closed-time-loop formalism is
written in a form where the place of contractions is taken by the linear
response function of the field. This result demonstrates that the physical
information supplied by Wick's theorem for operators is propagation of the free
field in space and time.Comment: Final version, to appear in Phys Rev
High frequency dielectric and magnetic anomaly at the phase transition in NaV2O5
We found anomalies in the temperature dependence of the dielectric and the
magnetic susceptibiliy of NaV_2O_5 in the microwave and far infrared frequency
ranges. The anomalies occur at the phase transition temperature T_c, at which
the spin gap opens. The real parts of the dielectric constants epsilon_a and
epsilon_c decrease below T_c. The decrease of epsilon_a (except for the narrow
region close to T_c) is proportional to the intensity of the x-ray reflection
appearing at T_c. The dielectric constant anomaly can be explained by the
zigzag charge ordering in the ab-plane appearing below T_c. The anomaly of the
microwave magnetic losses is probably related to the coupling between the spin
and charge degrees of freedom in vanadium ladders.Comment: 3 PS-figures, LATEX-text, new experimental data added, typos
correcte
Magnetic Resonance of the Intrinsic Defects of the Spin-Peierls Magnet CuGeO3
ESR of the pure monocrystals of CuGeO3 is studied in the frequency range 9-75
GHz and in the temperature interval 1.2-25 K. The splitting of the ESR line
into several spectral components is observed below 5 K, in the temperature
range where the magnetic susceptibility is suppressed by the spin-Peierls
dimerization. The analysis of the magnetic resonance signals allows one to
separate the signals of the S=1/2- and S=1 defects of the spin-Peierls phase.
The value of g-factor of these signals is close to that of the Cu-ion. The
additional line of the magnetic resonance is characterized by an anomalous
value of the g-factor and by the threshold-like increase of the microwave
susceptibility when the microwave power is increasing. The ESR signals are
supposingly attributed to two types of the planar magnetic defects, arising at
the boundaries of the domains of the spin-Peierls state with the different
values of the phase of the dimerization.Comment: LATEX-text, 12 PS-figures, typos corrected, LATEX-style change
Anomalous scaling of a passive scalar advected by the Navier--Stokes velocity field: Two-loop approximation
The field theoretic renormalization group and operator product expansion are
applied to the model of a passive scalar quantity advected by a non-Gaussian
velocity field with finite correlation time. The velocity is governed by the
Navier--Stokes equation, subject to an external random stirring force with the
correlation function . It is shown that
the scalar field is intermittent already for small , its structure
functions display anomalous scaling behavior, and the corresponding exponents
can be systematically calculated as series in . The practical
calculation is accomplished to order (two-loop approximation),
including anisotropic sectors. Like for the well-known Kraichnan's rapid-change
model, the anomalous scaling results from the existence in the model of
composite fields (operators) with negative scaling dimensions, identified with
the anomalous exponents. Thus the mechanism of the origin of anomalous scaling
appears similar for the Gaussian model with zero correlation time and
non-Gaussian model with finite correlation time. It should be emphasized that,
in contrast to Gaussian velocity ensembles with finite correlation time, the
model and the perturbation theory discussed here are manifestly Galilean
covariant. The relevance of these results for the real passive advection,
comparison with the Gaussian models and experiments are briefly discussed.Comment: 25 pages, 1 figur
Solid State Systems for Electron Electric Dipole Moment and other Fundamental Measurements
In 1968, F.L. Shapiro published the suggestion that one could search for an
electron EDM by applying a strong electric field to a substance that has an
unpaired electron spin; at low temperature, the EDM interaction would lead to a
net sample magnetization that can be detected with a SQUID magnetometer. One
experimental EDM search based on this technique was published, and for a number
of reasons including high sample conductivity, high operating temperature, and
limited SQUID technology, the result was not particularly sensitive compared to
other experiments in the late 1970's.
Advances in SQUID and conventional magnetometery had led us to reconsider
this type of experiment, which can be extended to searches and tests other than
EDMs (e.g., test of Lorentz invariance). In addition, the complementary
measurement of an EDM-induced sample electric polarization due to application
of a magnetic field to a paramagnetic sample might be effective using modern
ultrasensitive charge measurement techniques. A possible paramagnetic material
is Gd-substituted YIG which has very low conductivity and a net enhancement
(atomic enhancement times crystal screening) of order unity. Use of a
reasonable volume (100's of cc) sample of this material at 50 mK and 10 kV/cm
might yield an electron EDM sensitivity of e cm or better, a factor
of improvement over current experimental limits.Comment: 6 pages. Prepared for ITAMP workshop on fundamental physics that was
to be held Sept 20-22 2001 in Cambride, MA, but was canceled due to terrorist
attack on U.S New version incorporates a number of small changes, most
notably the scaling of the sensitivity of the Faraday magnetometer with
linewidth is now treated in a saner fashion. The possibility of operating at
an even lower temperarture, say 10 microkelvin, is also discusse
Counting and computing regions of -decomposition: algebro-geometric approach
New methods for -decomposition analysis are presented. They are based on
topology of real algebraic varieties and computational real algebraic geometry.
The estimate of number of root invariant regions for polynomial parametric
families of polynomial and matrices is given. For the case of two parametric
family more sharp estimate is proven. Theoretic results are supported by
various numerical simulations that show higher precision of presented methods
with respect to traditional ones. The presented methods are inherently global
and could be applied for studying -decomposition for the space of parameters
as a whole instead of some prescribed regions. For symbolic computations the
Maple v.14 software and its package RegularChains are used.Comment: 16 pages, 8 figure
- …