59 research outputs found

    Specific heat and magnetocaloric effect in Pr1-xAgxMnO3 manganites

    Full text link
    The magnetocaloric effect in alternating magnetic fields has been investigated in Pr1-xAgxMnO3 manganites with x=0.05-0.25. The stepwise reversal of the sign of the magnetocaloric effect has been revealed in a weakly doped sample (x=0.05) at low temperatures (~80 K). This reversal is attributed to the coexistence of the ferromagnetic and canted antiferromagnetic phases with different critical temperatures.Comment: 4 pages, 4 figure

    Phase Separation and the Low-Field Bulk Magnetic Properties of Pr0.7Ca0.3MnO3

    Full text link
    We present a detailed magnetic study of the perovskite manganite Pr0.7Ca0.3MnO3 at low temperatures including magnetization and a.c. susceptibility measurements. The data appear to exclude a conventional spin glass phase at low fields, suggesting instead the presence of correlated ferromagnetic clusters embedded in a charge-ordered matrix. We examine the growth of the ferromagnetic clusters with increasing magnetic field as they expand to occupy almost the entire sample at H ~ 0.5 T. Since this is well below the field required to induce a metallic state, our results point to the existence of a field-induced ferromagnetic insulating state in this material.Comment: 15 pages with figures, submitted to Physical Review

    Multiphase segregation and metal-insulator transition in single crystal La(5/8-y)Pr(y)Ca(3/8)MnO3

    Full text link
    The insulator-metal transition in single crystal La(5/8-y)Pr(y)Ca(3/8)MnO3 with y=0.35 was studied using synchrotron x-ray diffraction, electric resistivity, magnetic susceptibility, and specific heat measurements. Despite the dramatic drop in the resistivity at the insulator-metal transition temperature Tmi, the charge-ordering (CO) peaks exhibit no anomaly at this temperature and continue to grow below Tmi. Our data suggest then, that in addition to the CO phase, another insulating phase is present below Tco. In this picture, the insulator-metal transition is due to the changes within this latter phase. The CO phase does not appear to play a major role in this transition. We propose that a percolation-like insulator-metal transition occurs via the growth of ferromagnetic metallic domains within the parts of the sample that do not exhibit charge ordering. Finally, we find that the low-temperature phase-separated state is unstable against x-ray irradiation, which destroys the CO phase at low temperatures.Comment: 9 pages, 9 encapsulated eps figure

    X-ray Resonant Scattering Studies of Orbital and Charge Ordering in Pr1x_{1-x}Cax_xMnO3_3

    Full text link
    We present the results of a systematic x-ray scattering study of the charge and orbital ordering in the manganite series Pr1x_{1-x}Cax_xMnO3_3 with xx=0.25, 0.4 and 0.5. The temperature dependence of the scattering at the charge and orbital wavevectors, and of the lattice constants, was characterized throughout the ordered phase of each sample. It was found that the charge and orbital order wavevectors are commensurate with the lattice, in striking contrast to the results of earlier electron diffraction studies of samples with xx=0.5. High momentum-transfer resolution studies of the x=0.4 and 0.5 samples further revealed that while long-range charge order is present, long-range orbital order is never established. Above the charge/orbital ordering temperature To_o, the charge order fluctuations are more highly correlated than the orbital fluctuations. This suggests that charge order drives orbital order in these samples. In addition, a longitudinal modulation of the lattice with the same periodicity as the charge and orbital ordering was discovered in the x=0.4 and 0.5 samples. For x=0.25, only long-range orbital order was observed with no indication of charge ordering, nor of an additional lattice modulation. We also report the results of a preliminary investigation of the loss of charge and orbital ordering in the x=0.4 sample by application of a magnetic field. Finally, the polarization and azimuthal dependence of the charge and orbital ordering in these compounds is characterized both in the resonant and nonresonant limits, and compared with the predictions of current theories. The results are qualitatively consistent with both cluster and LDA+U calculations of the electronic structure.Comment: 37 pages, 22 figure

    Unified theory of phase separation and charge ordering in doped manganite perovskites

    Full text link
    A unified theory is developed to explain various types of electronic collective behaviors in doped manganites R1x_{1-x}Xx_xMnO3_3 (R = La, Pr,Nd etc. and X = Ca, Sr, Ba etc.). Starting from a realistic electronic model, we derive an effective Hamiltonianis by ultilizing the projection perturbation techniques and develop a spin-charge-orbital coherent state theory, in which the Jahn-Teller effect and the orbital degeneracy of eg_g electrons in Mn ions are taken into account. Physically, the experimentally observed charge ordering state and electronic phase separation are two macroscopic quantum phenomena with opposite physical mechanisms, and their physical origins are elucidated in this theory. Interplay of the Jahn-Teller effect, the lattice distortion as well as the double exchange mechanism leads to different magnetic structures and to different charge ordering patterns and phase separation.Comment: 10 ReVTEX pages with 4 figures attache

    Image Texture Characterization Using the Discrete Orthonormal S-Transform

    Get PDF
    We present a new efficient approach for characterizing image texture based on a recently published discrete, orthonormal space-frequency transform known as the DOST. We develop a frequency-domain implementation of the DOST in two dimensions for the case of dyadic frequency sampling. Then, we describe a rapid and efficient approach to obtain local spatial frequency information for an image and show that this information can be used to characterize the horizontal and vertical frequency patterns in synthetic images. Finally, we demonstrate that DOST components can be combined to obtain a rotationally invariant set of texture features that can accurately classify a series of texture patterns. The DOST provides the computational efficiency and multi-scale information of wavelet transforms, while providing texture features in terms of Fourier frequencies. It outperforms leading wavelet-based texture analysis methods

    Visuospatial Integration: Paleoanthropological and Archaeological Perspectives

    Get PDF
    The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between the brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in the parietal cortex, a region crucial to visuospatial management. Archaeological data provides information on hand–tool interaction, the spatial behavior of past populations, and their interaction with the environment. Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance integration between internal and external cognitive components through neural plasticity and the development of a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors
    corecore