4 research outputs found

    Pseudogap in the microwave response of YBa_2Cu_3O_{7-x}

    Full text link
    The in-plane and out-of-plane surface impedance and microwave conductivity components of one and the same YBa_2Cu_3O_{7-x} (0.07\le x\le 0.47) single crystal are determined in the wide ranges of temperature T and carrier concentration p in CuO_2 planes. The following features of the superfluid density n_s(T,p)\propto\lambda_{ab}^{-2}(T,p) are observed at T<Tc/2 and 0.078\le p\le 0.16: (i) n_s(0,p) depends linearly on p, (ii) the derivative |dn_s(T,p)/dT|_{T\to 0} depends on p slightly in the optimally and moderately doped regions (0.10<p\le 0.16); however, it rapidly increases with p further lowering and (iii) the latter finding is accompanied by the linear low-temperature dependence \Delta n_s(T)\propto(-T) changing to \Delta n_s(T)\propto(-\sqrt{T}). For optimum oxygen content the temperature dependence of the normalized imaginary part of the c-axis conductivity \lambda_c^2(0)/\lambda_c^2(T) is found to be strikingly similar to that of \lambda_{ab}^2(0)/\lambda_{ab}^2(T) and becomes more convex with p lowering. \lambda_c^{-2}(0,p) values are roughly proportional to the normal state conductivities \sigma_c(T_c,p) along the c-axis. All these properties can be treated in the framework of d-density wave order of pseudogap.Comment: 7 pages, 9 figures, presented at EUCAS 2003 (September 14-18), submitted to SUS

    Has the nonlinear Meissner effect been observed?

    Full text link
    We examine recent high-precision experimental data on the magnetic field, H{\bf H}, dependence of the penetration depth λ(H)\lambda(H) in YBa2Cu3O7−δ\rm{YBa_2Cu_3O_{7-\delta}} (YBCO) for several field directions in the a−ba-b plane. In a new theoretical analysis that incorporates the effects of orthorhombic symmetry, we show that the data at sufficiently high magnetic fields and low temperatures are in quantitative agreement with the theoretical predictions of the nonlinear Meissner effect.Comment: 4 text pages plus 3 postscript figure

    Angular dependence of the penetration depth in unconventional superconductors

    Full text link
    We examine the Meissner state nonlinear electrodynamic effects on the field and angular dependence of the low temperature penetration depth, λ\lambda, of superconductors in several kinds of unconventional pairing states, with nodes or deep minima (``quasinodes'') in the energy gap. Our calculations are prompted by the fact that, for typical unconventional superconducting material parameters, the predicted size of these effects for λ\lambda exceeds the available experimental precision for this quantity by a much larger factor than for others. We obtain expressions for the nonlinear component of the penetration depth, Δλ\Delta\lambda, for different two- and three- dimensional nodal or quasinodal structures. Each case has a characteristic signature as to its dependence on the size and orientation of the applied magnetic field. This shows that Δλ\Delta\lambda measurements can be used to elucidate the nodal or quasinodal structure of the energy gap. For nodal lines we find that Δλ\Delta\lambda is linear in the applied field, while the dependence is quadratic for point nodes. For layered materials with YBa2Cu3O7−δ\rm{YBa_2Cu_3O_{7-\delta}} (YBCO) type anisotropy, our results for the angular dependence of Δλ\Delta\lambda differ greatly from those for tetragonal materials and are in agreement with experiment. For the two- and three- dimensional quasinodal cases, Δλ\Delta\lambda is no longer proportional to a power of the field and the field and angular dependences are not separable, with a suppression of the overall signal as the node is filled in.Comment: 16 pages plus nine figure
    corecore