12 research outputs found

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio

    Development of quantitative SHE index for waste to energy technology selection

    No full text
    Municipal solid waste (MSW) conversion to energy through waste-to-energy technologies (WtE) is promising in offering sustainable and environmentally friendly answers to MSW disposal problems. This paper proposes a quantitative safety, health and environmental (SHE) index for WtE selection. This technique compares WtE technologies according to SHE hazards posed by the chemicals produced. Scores representing the level of hazards expected is assigned to SHE parameters through the implementation of the logistic function. These scores are then added to produce a single score representing the technologies called the Safety, Health and Environmental Total Score (SHETS). Technologies with a lower score are more preferable than a higher score. This technique was applied to a case study of landfill gas recovery system, incineration, gasification, and anaerobic digestion. Incineration is evaluated as the least preferred technology with SHETS value of 54.74 mainly due to the existence of sulfur dioxide which has high atmospheric toxicity and acidification potential while gasification is the most preferred waste-to-energy technology with SHETS value of 50.82. The developed index provides insight on SHE hazards of the chemicals produced allowing the adoption of preventive measures for the development of WtE technology that is efficient in energy production, safer, healthier and environmentally friendlier
    corecore