2,926 research outputs found

    Interplay of Kondo and superconducting correlations in the nonequilibrium Andreev transport through a quantum dot

    Full text link
    Using the modified perturbation theory, we theoretically study the nonequilibrium Andreev transport through a quantum dot coupled to normal and superconducting leads (N-QD-S), which is strongly influenced by the Kondo and superconducting correlations. From the numerical calculation, we find that the renormalized couplings between the leads and the dot in the equilibrium states characterize the peak formation in the nonequilibrium differential conductance. In particular, in the Kondo regime, the enhancement of the Andreev transport via a Kondo resonance occurs in the differential conductance at a finite bias voltage, leading to an anomalous peak whose position is given by the renormalized parameters. In addition to the peak, we show that the energy levels of the Andreev bound states give rise to other peaks in the differential conductance in the strongly correlated N-QD-S system. All these features of the nonequilibrium transport are consistent with those in the recent experimental results [R. S. Deacon {\it et al.}, Phys. Rev. Lett. {\bf 104}, 076805 (2010); Phys. Rev. B {\bf 81}, 12308 (2010)]. We also find that the interplay of the Kondo and superconducting correlations induces an intriguing pinning effect of the Andreev resonances to the Fermi level and its counter position.Comment: 22 pages, 23 figure

    Correlated electron transport through double quantum dots coupled to normal and superconducting leads

    Full text link
    We study Andreev transport through double quantum dots connected in series normal and superconducting (SC) leads, using the numerical renormalization group. The ground state of this system shows a crossover between a local Cooper-pairing singlet state and a Kondo singlet state, which is caused by the competition between the Coulomb interaction and the SC proximity. We show that the ground-state properties reflect this crossover especially for small values of the inter-dot coupling tt, while in the opposite case, for large tt, another singlet with an inter-dot character becomes dominant. We find that the conductance for the local SC singlet state has a peak with the unitary-limit value 4e2/h4e^2/h. In contrast, the Andreev reflection is suppressed in the Kondo regime by the Coulomb interaction. Furthermore, the conductance has two successive peaks in the transient region of the crossover. It is further elucidated that the gate voltage gives a different variation into the crossover. Specifically, as the energy level of the dot that is coupled to the normal lead varies, the Kondo screening cloud is deformed to a long-range singlet bond.Comment: 11 pages, 10 figure

    On the spectrum of S=1/2 XXX Heisenberg chain with elliptic exchange

    Full text link
    It is found that the Hamiltonian of S=1/2 isotropic Heisenberg chain with NN sites and elliptic non-nearest-neighbor exchange is diagonalized in each sector of the Hilbert space with magnetization N/2−MN/2-M, 1<M≤[N/2]1<M\leq[N/2], by means of double quasiperiodic meromorphic solutions to the MM-particle quantum Calogero-Moser problem on a line. The spectrum and highest-weight states are determined by the solutions of the systems of transcendental equations of the Bethe-ansatz type which arise as restrictions to particle pseudomomenta.Comment: 9 pages, Late
    • …
    corecore