155 research outputs found

    Dephasing of Electrons on Helium by Collisions with Gas Atoms

    Full text link
    The damping of quantum effects in the transport properties of electrons deposited on a surface of liquid helium is studied. It is found that due to vertical motion of the helium vapour atoms the interference of paths of duration tt is damped by a factor exp(t/τv)3\exp - (t/\tau_v)^3. An expression is derived for the weak-localization lineshape in the case that damping occurs by a combination of processes with this type of cubic exponential damping and processes with a simple exponential damping factor.Comment: 7 pages, 2 figures, Revte

    Antifungal screening and in silico mechanistic studies of an in-house azole library

    Get PDF
    Systemic Candida infections pose a serious public health problem with high morbidity and mortality. C. albicans is the major pathogen identified in candidiasis, however non-albicans Candida spp. with antifungal resistance are now more prevalent. Azoles are first-choice antifungal drugs for candidiasis, however they are ineffective for certain infections caused by the resistant strains. Azoles block ergosterol synthesis by inhibiting fungal CYP51, which leads to disruption of fungal membrane permeability. In this study, we screened for antifungal activity of an in-house azole library of 65 compounds to identify hit matter followed by a molecular modelling study for their CYP51 inhibition mechanism. Antifungal susceptibility tests against standard Candida spp. including C. albicans revealed derivatives 12 and 13 as highly active. Furthermore, they showed potent antibiofilm activity as well as neglectable cytotoxicity in a mouse fibroblast assay. According to molecular docking studies 12 and 13 have the necessary binding characteristics for effective inhibition of CYP51. Finally, molecular dynamics (MD) simulations of the C. albicans CYP51 (CACYP51) homology model's catalytic site complexed with 13 was stable demonstrating excellent binding. This article is protected by copyright. All rights reserved

    Invariance of Charge of Laughlin Quasiparticles

    Full text link
    A Quantum Antidot electrometer has been used in the first direct observation of the fractionally quantized electric charge. In this paper we report experiments performed on the integer i = 1, 2 and fractional f = 1/3 quantum Hall plateaus extending over a filling factor range of at least 27%. We find the charge of the Laughlin quasiparticles to be invariantly e/3, with standard deviation of 1.2% and absolute accuracy of 4%, independent of filling, tunneling current, and temperature.Comment: 4 pages, 5 fig

    Dephasing Times in a Non-degenerate Two-Dimensional Electron Gas

    Full text link
    Studies of weak localization by scattering from vapor atoms for electrons on a liquid helium surface are reported. There are three contributions to the dephasing time. Dephasing by the motion of vapor atoms perpendicular to the surface is studied by varying the holding field to change the characteristic width of the electron layer at the surface. A change in vapor density alters the quasi-elastic scattering length and the dephasing due to the motion of atoms both perpendicular and parallel to the surface. Dephasing due to the electron-electron interaction is dependent on the electron density.Comment: 4 pages, Revte

    Magnetoresistance of nondegenerate quantum electron channels formed on the surface of superfluid helium

    Full text link
    Transport properties of quasi-one-dimensional nondegenerate quantum wires formed on the surface of liquid helium in the presence of a normal magnetic field are studied using the momentum balance equation method and the memory function formalism. The interaction with both kinds of scatterers available (vapor atoms and capillary wave quanta) is considered. We show that unlike classical wires, quantum nondegenerate channels exhibit strong magnetoresistance which increases with lowering the temperature.Comment: 8 pages, 7 figure

    Resistance fluctuations and Aharonov-Bohm-type oscillations in antidot arrays in the quantum Hall regime

    Full text link
    Resistance fluctuation phenomenon in antidot lattices in the quantum Hall regime are studied. Magnetoresistance of finite antidot array systems in the quantum Hall plateau transition regime exhibits two types of oscillatory effect. One is the aperiodic resistance fluctuations (RFs) and the other is the Aharonov-Bohm (AB)-type oscillations. Their dependences on the magnetic field and the gate voltage are quite distinct. While the aperiodic RFs are attributed to the complex evolution of the conducting network of compressible channels, the AB-type oscillations are interpreted in terms of edge states formed around individual antidots. The self-consistent screening effect is important for the both phenomenon, whereas, the single electron charging effect plays a minor role in the present case.Comment: 5 pages, 4 figure
    corecore