149,844 research outputs found
Three-dimensional numerical simulation of magnetohydrodynamic-gravity waves and vortices in the solar atmosphere
With the adaptation of the FLASH code we simulate magnetohydrodynamic-gravity
waves and vortices as well as their response in the magnetized
three-dimensional (3D) solar atmosphere at different heights to understand the
localized energy transport processes. In the solar atmosphere strongly
structured by gravitational and magnetic forces, we launch a localized velocity
pulse (in horizontal and vertical components) within a bottom layer of 3D solar
atmosphere modelled by initial VAL-IIIC conditions, which triggers waves and
vortices. The rotation direction of vortices depends on the orientation of an
initial perturbation. The vertical driver generates magnetoacoustic-gravity
waves which result in oscillations of the transition region, and it leads to
the eddies with their symmetry axis oriented vertically. The horizontal pulse
excites all magnetohydrodynamic-gravity waves and horizontally oriented eddies.
These waves propagate upwards, penetrate the transition region, and enter the
solar corona. In the high-beta plasma regions the magnetic field lines move
with the plasma and the temporal evolution show that they swirl with eddies. We
estimate the energy fluxes carried out by the waves in the magnetized solar
atmosphere and conclude that such wave dynamics and vortices may be significant
in transporting the energy to sufficiently balance the energy losses in the
localized corona. Moreover, the structure of the transition region highly
affects such energy transports, and causes the channelling of the propagating
waves into the inner corona.Comment: 11 Pages, 12 Figures, Accepted for the publication in MNRA
Robustness of the avalanche dynamics in data packet transport on scale-free networks
We study the avalanche dynamics in the data packet transport on scale-free
networks through a simple model. In the model, each vertex is assigned a
capacity proportional to the load with a proportionality constant . When
the system is perturbed by a single vertex removal, the load of each vertex is
redistributed, followed by subsequent failures of overloaded vertices. The
avalanche size depends on the parameter as well as which vertex triggers
it. We find that there exists a critical value at which the avalanche
size distribution follows a power law. The critical exponent associated with it
appears to be robust as long as the degree exponent is between 2 and 3, and is
close in value to that of the distribution of the diameter changes by single
vertex removal.Comment: 5 pages, 7 figures, final version published in PR
Renormalization Group Technique Applied to the Pairing Interaction of the Quasi-One-Dimensional Superconductivity
A mechanism of the quasi-one-dimensional (q1d) superconductivity is
investigated by applying the renormalization group techniques to the pairing
interaction. With the obtained renormalized pairing interaction, the transition
temperature Tc and corresponding gap function are calculated by solving the
linearized gap equation. For reasonable sets of parameters, Tc of p-wave
triplet pairing is higher than that of d-wave singlet pairing due to the
one-dimensionality of interaction. These results can qualitatively explain the
superconducting properties of q1d organic conductor (TMTSF)2PF6 and the ladder
compound Sr2Ca12Cu24O41.Comment: 18 pages, 9 figures, submitted to J. Phys. Soc. Jp
Sandpiles on multiplex networks
We introduce the sandpile model on multiplex networks with more than one type
of edge and investigate its scaling and dynamical behaviors. We find that the
introduction of multiplexity does not alter the scaling behavior of avalanche
dynamics; the system is critical with an asymptotic power-law avalanche size
distribution with an exponent on duplex random networks. The
detailed cascade dynamics, however, is affected by the multiplex coupling. For
example, higher-degree nodes such as hubs in scale-free networks fail more
often in the multiplex dynamics than in the simplex network counterpart in
which different types of edges are simply aggregated. Our results suggest that
multiplex modeling would be necessary in order to gain a better understanding
of cascading failure phenomena of real-world multiplex complex systems, such as
the global economic crisis.Comment: 7 pages, 7 figure
Internet data packet transport: from global topology to local queueing dynamics
We study structural feature and evolution of the Internet at the autonomous
systems level. Extracting relevant parameters for the growth dynamics of the
Internet topology, we construct a toy model for the Internet evolution, which
includes the ingredients of multiplicative stochastic evolution of nodes and
edges and adaptive rewiring of edges. The model reproduces successfully
structural features of the Internet at a fundamental level. We also introduce a
quantity called the load as the capacity of node needed for handling the
communication traffic and study its time-dependent behavior at the hubs across
years. The load at hub increases with network size as .
Finally, we study data packet traffic in the microscopic scale. The average
delay time of data packets in a queueing system is calculated, in particular,
when the number of arrival channels is scale-free. We show that when the number
of arriving data packets follows a power law distribution, ,
the queue length distribution decays as and the average delay
time at the hub diverges as in the limit when , being the network degree
exponent.Comment: 5 pages, 4 figures, submitted to International Journal of Bifurcation
and Chao
Branching process approach for Boolean bipartite networks of metabolic reactions
The branching process (BP) approach has been successful in explaining the
avalanche dynamics in complex networks. However, its applications are mainly
focused on unipartite networks, in which all nodes are of the same type. Here,
motivated by a need to understand avalanche dynamics in metabolic networks, we
extend the BP approach to a particular bipartite network composed of Boolean
AND and OR logic gates. We reduce the bipartite network into a unipartite
network by integrating out OR gates, and obtain the effective branching ratio
for the remaining AND gates. Then the standard BP approach is applied to the
reduced network, and the avalanche size distribution is obtained. We test the
BP results with simulations on the model networks and two microbial metabolic
networks, demonstrating the usefulness of the BP approach
- …