13 research outputs found

    Molecular markers to exploit genotype-environment interactions of relevance in organic growing systems

    No full text
    One of the substantial differences between conventional and organic growing systems is the degree to which the farmer can control biotic and abiotic stresses; for organic growing systems varieties are needed with a broad adaptation to annually varying factors, while at the same time a good specific adaptation is necessary with respect to more constant climate and soil conditions. This combination of requirements implies that varieties for organic farming need to be better characterised with respect to genotype x environment interactions than varieties for conventional farming. Such interactions, which often are found for quantitatively expressed traits, are in general difficult to deal with in phenotypic selection. New approaches for QTL analyses (e.g. using physiological models) facilitate estimation of effects of genes on a trait (the phenotype) as a response to environmental influences. From such analyses, markers can be identified which may help to predict the trait expression of a plant genotype in relation to defined environmental factors. The application of markers to select for loci with specific interactions with the environment could, therefore, be especially important for plant breeders targeting organic farming systems
    corecore