7,267 research outputs found

    The electronic structure of the Nax_xCoO2_2 surface

    Full text link
    The idea that surface effects may play an important role in suppressing eg′e_g' Fermi surface pockets on Nax_xCoO2_2 (0.333≤x≤0.75)(0.333 \le x \le 0.75) has been frequently proposed to explain the discrepancy between LDA calculations (performed on the bulk compound) which find ege_g' hole pockets present and ARPES experiments, which do not observe the hole pockets. Since ARPES is a surface sensitive technique it is important to investigate the effects that surface formation will have on the electronic structure of Na1/3_{1/3}CoO2_2 in order to more accurately compare theory and experiment. We have calculated the band structure and Fermi surface of cleaved Na1/3_{1/3}CoO2_2 and determined that the surface non-trivially affects the fermiology in comparison to the bulk. Additionally, we examine the likelihood of possible hydroxyl cotamination and surface termination. Our results show that a combination of surface formation and contamination effects could resolve the ongoing controversy between ARPES experiments and theory.Comment: 4 pages, 2 figure

    The origin of a1g_{1g} and eg_g' orderings in Nax_xCoO2_2

    Full text link
    It has often been suggested that correlation effects suppress the small e_g' Fermi surface pockets of NaxCoO_2 that are predicted by LDA, but absent in ARPES measurements. It appears that within the dynamical mean field theory (DMFT) the ARPES can be reproduced only if the on-site energy of the eg' complex is lower than that of the a1g complex at the one-electron level, prior to the addition of local correlation effects. Current estimates regarding the order of the two orbital complexes range from -200 meV to 315 meV in therms of the energy difference. In this work, we perform density functional theory calculations of this one-electron splitting \Delta= \epsilon_a1g-\epsilon_e_g' for the full two-layer compound, Na2xCo2O4, accounting for the effects of Na ordering, interplanar interactions and octahedral distortion. We find that \epsilon a_1g-\epsilon e_g' is negative for all Na fillings and that this is primarily due to the strongly positive Coulomb field created by Na+ ions in the intercalant plane. This field disproportionately affects the a_1g orbital which protrudes farther upward from the Co plane than the e_g' orbitals. We discuss also the secondary effects of octahedral compression and multi-orbital filling on the value of \Delta as a function of Na content. Our results indicate that if the e_g' pockets are indeed suppressed that can only be due to nonlocal correlation effects beyond the standard DMFT.Comment: 4 pages, 3 figure

    Effect of doping and pressure on magnetism and lattice structure of Fe-based superconductors

    Full text link
    Using first principles calculations, we analyze structural and magnetic trends as a function of charge doping and pressure in BaFe2_2As2_2, and compare to experimentally established facts. We find that density functional theory, while accurately reproducing the structural and magnetic ordering at ambient pressure, fails to reproduce some structural trends as pressure is increased. Most notably, the Fe-As bondlength which is a gauge of the magnitude of the magnetic moment, μ\mu, is rigid in experiment, but soft in calculation, indicating residual local Coulomb interactions. By calculating the magnitude of the magnetic ordering energy, we show that the disruption of magnetic order as a function of pressure or doping can be qualitatively reproduced, but that in calculation, it is achieved through diminishment of ∣μ∣|\mu|, and therefore likely does not reflect the same physics as detected in experiment. We also find that the strength of the stripe order as a function of doping is strongly site-dependent: magnetism decreases monotonically with the number of electrons doped at the Fe site, but increases monotonically with the number of electrons doped at the Ba site. Intra-planar magnetic ordering energy (the difference between checkerboard and stripe orderings) and interplanar coupling both follow a similar trend. We also investigate the evolution of the orthorhombic distortion, e=(a−b)/(a+b),e=(a-b)/(a+b), as a function of μ\mu, and find that in the regime where experiment finds a linear relationship, our calculations are impossible to converge, indicating that in density functional theory, the transition is first order, signalling anomalously large higher order terms in the Landau functional

    Formation of an unconventional Ag valence state in Ag2NiO2

    Full text link
    The Ag ion in the recently synthesized novel material Ag2NiO2 adopts an extremely unusual valency of 1/2, leaving the Ni ion as 3+, rather than the expected 2+. Using first principles calculations, we show that this mysterious subvalent state emerges due to a strong bonding-antibonding interaction between the two Ag layers which drives the lower band beneath the O p complex, eliminating the possibility of a conventional Ag 1+ valence state. The strong renormalization of the specific heat coefficient, gamma, is likely due to strong spin fluctuations that stem from nearly complete compensation of the ferro- (metallic double exchange and the 90 degree superexchange) and antiferromagnetic (conventional superexchange via Ni-O-Ag-O-Ni path) interactions

    The challenge of unravelling magnetic properties in LaFeAsO

    Full text link
    First principles calculations of magnetic and, to a lesser extent, electronic properties of the novel LaFeAsO-based superconductors show substantial apparent controversy, as opposed to most weakly or strongly correlated materials. Not only do different reports disagree about quantitative values, there is also a schism in terms of interpreting the basic physics of the magnetic interactions in this system. In this paper, we present a systematic analysis using four different first principles methods and show that while there is an unusual sensitivity to computational details, well-converged full-potential all-electron results are fully consistent among themselves. What makes results so sensitive and the system so different from simple local magnetic moments interacting via basic superexchange mechanisms is the itinerant character of the calculated magnetic ground state, where very soft magnetic moments and long-range interactions are characterized by a particular structure in the reciprocal (as opposed to real) space. Therefore, unravelling the magnetic interactions in their full richness remains a challenging, but utterly important task
    • …
    corecore