4 research outputs found

    Adaptive scheduled partitioning technique for reliable emergency message broadcasting in VANET for intelligent transportation systems

    Get PDF
    This paper aims to enable accurate and reliable emergency message broadcast in Vehicular Ad hoc Network (VANET). The VANET is the most common topology used in Intelligent Transportation Systems (ITS), where changes in standard topology due to the mobility of nodes create challenges in broadcasting the emergency message and efficient data delivery in both highway and urban scenarios. The main problems in urban scenarios are channel contention, message redundancy and road structure. To obtain information, broadcast protocols for VANET typically use beacon messages, which are distributed among the vehicles. When multiple vehicles transmit messages at the same time, a broadcast storm occurs and vehicles experience message delivery failure. To address this problem, Adaptive Scheduled Partitioning and Broadcasting Technique (ASPBT) for emergency message broadcast and beacon retransmissions for message reliability were proposed. This protocol dynamically modifies several partitions and beacon periodicity to reduce the number of retransmissions. Later, the partition size is determined by estimating the network transmission density of each partition schedule via the Black Widow Optimization (BWO) algorithm is proposed. The simulation is carried out with different network densities at the vehicle speed of 110 km/h, a direct path length of 12 km under a four-way direction path and performance analysis was performed

    RONI Based Secured and Authenticated Indexing of Lung CT Images

    No full text
    Medical images need to be transmitted with the patient’s information without altering the image data. The present paper discusses secured indexing of lung CT image (SILI) which is a secured way of indexing the lung CT images with the patient information. Authentication is provided using the sender’s logo information and the secret key is used for embedding the watermark into the host image. Watermark is embedded into the region of Noninterest (RONI) of the lung CT image. RONI is identified by segmenting the lung tissue from the CT scan image. The experimental results show that the proposed approach is robust against unauthorized access, noise, blurring, and intensity based attacks

    Lung Cancer Classification Employing Proposed Real Coded Genetic Algorithm Based Radial Basis Function Neural Network Classifier

    No full text
    A proposed real coded genetic algorithm based radial basis function neural network classifier is employed to perform effective classification of healthy and cancer affected lung images. Real Coded Genetic Algorithm (RCGA) is proposed to overcome the Hamming Cliff problem encountered with the Binary Coded Genetic Algorithm (BCGA). Radial Basis Function Neural Network (RBFNN) classifier is chosen as a classifier model because of its Gaussian Kernel function and its effective learning process to avoid local and global minima problem and enable faster convergence. This paper specifically focused on tuning the weights and bias of RBFNN classifier employing the proposed RCGA. The operators used in RCGA enable the algorithm flow to compute weights and bias value so that minimum Mean Square Error (MSE) is obtained. With both the lung healthy and cancer images from Lung Image Database Consortium (LIDC) database and Real time database, it is noted that the proposed RCGA based RBFNN classifier has performed effective classification of the healthy lung tissues and that of the cancer affected lung nodules. The classification accuracy computed using the proposed approach is noted to be higher in comparison with that of the classifiers proposed earlier in the literatures

    Adaptive scheduled partitioning technique for reliable emergency message broadcasting in VANET for intelligent transportation systems

    No full text
    This paper aims to enable accurate and reliable emergency message broadcast in Vehicular Ad hoc Network (VANET). The VANET is the most common topology used in Intelligent Transportation Systems (ITS), where changes in standard topology due to the mobility of nodes create challenges in broadcasting the emergency message and efficient data delivery in both highway and urban scenarios. The main problems in urban scenarios are channel contention, message redundancy and road structure. To obtain information, broadcast protocols for VANET typically use beacon messages, which are distributed among the vehicles. When multiple vehicles transmit messages at the same time, a broadcast storm occurs and vehicles experience message delivery failure. To address this problem, Adaptive Scheduled Partitioning and Broadcasting Technique (ASPBT) for emergency message broadcast and beacon retransmissions for message reliability were proposed. This protocol dynamically modifies several partitions and beacon periodicity to reduce the number of retransmissions. Later, the partition size is determined by estimating the network transmission density of each partition schedule via the Black Widow Optimization (BWO) algorithm is proposed. The simulation is carried out with different network densities at the vehicle speed of 110 km/h, a direct path length of 12 km under a four-way direction path and performance analysis was performed
    corecore