89 research outputs found
Numerical simulation of surface waves instability on a discrete grid
We perform full-scale numerical simulation of instability of weakly nonlinear
waves on the surface of deep fluid. We show that the instability development
leads to chaotization and formation of wave turbulence.
We study instability both of propagating and standing waves. We studied
separately pure capillary wave unstable due to three-wave interactions and pure
gravity waves unstable due to four-wave interactions. The theoretical
description of instabilities in all cases is included into the article. The
numerical algorithm used in these and many other previous simulations performed
by authors is described in details.Comment: 47 pages, 40 figure
Mesoscopic wave turbulence
We report results of sumulation of wave turbulence. Both inverse and direct
cascades are observed. The definition of "mesoscopic turbulence" is given. This
is a regime when the number of modes in a system involved in turbulence is high
enough to qualitatively simulate most of the processes but significantly
smaller then the threshold which gives us quantitative agreement with the
statistical description, such as kinetic equation. Such a regime takes place in
numerical simulation, in essentially finite systems, etc.Comment: 5 pages, 11 figure
Optical Pulse Dynamics in Active Metamaterials with Positive and Negative Refractive Index
We study numerically the propagation of two-color light pulses through a
metamaterial doped with active atoms such that the carrier frequencies of the
pulses are in resonance with two atomic transitions in the
configuration and that one color propagates in the regime of positive
refraction and the other in the regime of negative refraction. In such a
metamaterial, one resonant color of light propagates with positive and the
other with negative group velocity. We investigate nonlinear interaction of
these forward- and backward-propagating waves, and find self-trapped waves,
counter-propagating radiation waves, and hot spots of medium excitation.Comment: 9 pages, 6 figure
Extraction processing of concentrated solutions of uranyl nitrate with high impurities content
Process flowsheet of recycling uranium concentrated solutions with its purification from insoluble impurities of iron, silicon, molybdenum, calcium oxides and hydroxides and soluble impurities with application of centrifugal extractors cascade has been developed and suggested for commercial introduction. The process was carried out at extractant saturation (30 % tributyl phosphate in hydrocarbon diluent) in extraction assembly lower than a limiting level (85...95 g/l) and in wash assembly - at limiting saturation (up to 120 g/l). As a result the waste uranium content in water-tail solutions 0,01...0,04 g/l and minimal content of impurities in re-extractors is provide
Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation
By performing two parallel numerical experiments -- solving the dynamical
Hamiltonian equations and solving the Hasselmann kinetic equation -- we
examined the applicability of the theory of weak turbulence to the description
of the time evolution of an ensemble of free surface waves (a swell) on deep
water. We observed qualitative coincidence of the results.
To achieve quantitative coincidence, we augmented the kinetic equation by an
empirical dissipation term modelling the strongly nonlinear process of
white-capping. Fitting the two experiments, we determined the dissipation
function due to wave breaking and found that it depends very sharply on the
parameter of nonlinearity (the surface steepness). The onset of white-capping
can be compared to a second-order phase transition. This result corroborates
with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter
Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves
We study the long-time evolution of gravity waves on deep water exited by the
stochastic external force concentrated in moderately small wave numbers. We
numerically implement the primitive Euler equations for the potential flow of
an ideal fluid with free surface written in canonical variables, using
expansion of the Hamiltonian in powers of nonlinearity of up to fourth order
terms.
We show that due to nonlinear interaction processes a stationary energy
spectrum close to is formed. The observed spectrum can be
interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of
energy.Comment: 4 pages, 5 figure
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ³ΠΈΠ±ΠΎΠ² ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅ΡΠΎΠ½Π½ΡΡ ΡΡΠΎΠ΅ΠΊ ΠΎΠΏΠΎΡ Π²ΠΎΠ·Π΄ΡΡΠ½ΡΡ Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅-ΡΠ΅Π΄Π°ΡΠΈ
The paper contains values of torque magnification ratio while shifting vertical loads due to horizontal wind forces affecting on supports of overhead transmission lines of 35 kV and higher. These values pertain to various types of unified reinforced concrete conic and cylindrical supports while changing climatic conditions. The values make it possible to exclude rather complicated calculations in respect of support deflection in the case when there is uncertainty in initial data.ΠΠΎΠ»ΡΡΠ΅Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΈΠ·Π³ΠΈΠ±Π°ΡΡΠ΅Π³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° ΠΏΡΠΈ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΡ
Π½Π°Π³ΡΡΠ·ΠΎΠΊ ΠΈΠ·-Π·Π° Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
Π½Π° ΠΎΠΏΠΎΡΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΡ
Π²Π΅ΡΡΠΎΠ²ΡΡ
ΡΠΈΠ» Π²ΠΎΠ·Π΄ΡΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 35 ΠΊΠ ΠΈ Π²ΡΡΠ΅ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ² ΡΠ½ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅ΡΠΎΠ½Π½ΡΡ
ΠΊΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠΎΠ΅ΠΊ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΊΠ»ΠΈΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ. ΠΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΎΡΠ²ΠΎΠ±ΠΎΠ΄ΠΈΡΡΡΡ ΠΎΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΏΡΠΎΠ³ΠΈΠ±ΠΎΠ² ΡΡΠΎΠ΅ΠΊ ΠΏΡΠΈ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ
Π ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΏΡΠΎΠΊΠ»Π°Π΄ΠΊΠΈ Π²Π½Π΅ Π½Π°ΡΠ΅Π»Π΅Π½Π½ΡΡ ΠΏΡΠ½ΠΊΡΠΎΠ² ΠΊΠ°Π±Π΅Π»ΡΠ½ΡΡ Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 6β35 ΠΊΠ Π²ΠΌΠ΅ΡΡΠΎ Π²ΠΎΠ·Π΄ΡΡΠ½ΡΡ
. It is noted that at present, 10 and 35 kV overhead power transmission lines are being laid outside the settlements of the Republic of Belarus on reinforced concrete vibrated (10 kV) and centrifuged (35 kV) poles that are characterized by low reliability and damaging the environment (on account of alienation of land for poles, the need to make a wide clearing for laying in the forest, obstructions by poles and wires of lines to the operation of agricultural machinery, the danger of electric shock to personnel and the public). It is possible to avoid these disadvantages if, instead of overhead lines, power transmission cables with cables insulated by cross-linked polyethylene are used which are characterized by a very low failure flow parameter. Contrary to the prevailing opinion about the higher cost of cable power transmission lines compared to overhead ones of the same rated voltage, it turned out that, taking into account reliability, the cost of electricity lost in the lines for a year, damage to the environment and to the power system caused by the need to perform more expensive emergency repairs (as compared to a planned one), laying cable lines with three-core and single-core cables of a voltage of 10 and 35 kV instead of overhead cables outside the populated area is fairly justified. In this connection, the laying of three-core cables is more preferable. It should be also borne in mind that with an increase in the length of cable lines, the capacitive earth fault current increases, to compensate for which additional devices are needed to be installed in power centers, viz. arc-extinguishing reactors or resistors, accounting for the cost of which (up to 22 % of the cost of one kilometer of cable line) does not significantly affect the conclusions we have drawn regarding the effectiveness of using 6β35 kV cable power lines in an unpopulated area instead of overhead ones, however.Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ Π² Π Π΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ΅ ΠΠ΅Π»Π°ΡΡΡΡ Π²Π½Π΅ Π½Π°ΡΠ΅Π»Π΅Π½Π½ΡΡ
ΠΏΡΠ½ΠΊΡΠΎΠ² ΠΏΡΠΎΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ Π²ΠΎΠ·Π΄ΡΡΠ½ΡΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 10 ΠΈ 35 ΠΊΠ Π½Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅ΡΠΎΠ½Π½ΡΡ
Π²ΠΈΠ±ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
(10 ΠΊΠ) ΠΈ ΡΠ΅Π½ΡΡΠΈΡΡΠ³ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
(35 ΠΊΠ) ΡΡΠΎΠΉΠΊΠ°Ρ
ΠΎΠΏΠΎΡ. ΠΠ½ΠΈ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ Π½ΠΈΠ·ΠΊΠΎΠΉ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΡΡ ΠΈ Π½Π°Π½ΠΎΡΡΡ ΡΡΠ΅ΡΠ± ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΡΠ΅Π±ΡΡΡ ΠΎΡΡΡΠΆΠ΄Π΅Π½ΠΈΡ Π·Π΅ΠΌΠ»ΠΈ ΠΏΠΎΠ΄ ΠΎΠΏΠΎΡΡ ΠΈ Π²ΡΡΡΠ±ΠΊΠΈ ΡΠΈΡΠΎΠΊΠΎΠΉ ΠΏΡΠΎΡΠ΅ΠΊΠΈ Π΄Π»Ρ ΠΏΡΠΎΠΊΠ»Π°Π΄ΠΊΠΈ Π² Π»Π΅ΡΠ½ΠΎΠΌ ΠΌΠ°ΡΡΠΈΠ²Π΅. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΎΠΏΠΎΡΡ ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π° Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΡΠΎΠ·Π΄Π°ΡΡ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΈΡ Π΄Π»Ρ ΡΠ°Π±ΠΎΡΡ ΡΠ΅Π»ΡΡΠΊΠΎΡ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΡΡ
ΠΌΠ°ΡΠΈΠ½, Π½Π΅ΡΡΡ ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΎΠΊΠΎΠΌ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»Π° ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ. ΠΠ·Π±Π΅ΠΆΠ°ΡΡ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ, Π·Π°ΠΌΠ΅Π½ΠΈΠ² Π²ΠΎΠ·Π΄ΡΡΠ½ΡΠ΅ Π»ΠΈΠ½ΠΈΠΈ ΠΊΠ°Π±Π΅Π»ΡΠ½ΡΠΌΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΊΠ°Π±Π΅Π»ΠΈ Ρ ΠΈΠ·ΠΎΠ»ΡΡΠΈΠ΅ΠΉ ΠΈΠ· ΡΡΠΈΡΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΈΡΡΠΈΠ»Π΅Π½Π°, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΠ΅ΡΡ Π²Π΅ΡΡΠΌΠ° Π½ΠΈΠ·ΠΊΠΈΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ ΠΏΠΎΡΠΎΠΊΠ° ΠΎΡΠΊΠ°Π·ΠΎΠ². ΠΠΎΠΏΡΠ΅ΠΊΠΈ ΡΠ»ΠΎΠΆΠΈΠ²ΡΠ΅ΠΌΡΡΡ ΠΌΠ½Π΅Π½ΠΈΡ ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΊΠ°Π±Π΅Π»ΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π²ΠΎΠ·Π΄ΡΡΠ½ΡΠΌΠΈ ΡΠΎΠ³ΠΎ ΠΆΠ΅ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΠΎΠΊΠ°Π·Π°Π»ΠΎΡΡ, ΡΡΠΎ ΠΏΡΠΈ ΡΡΠ΅ΡΠ΅ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΡΡΠΈ, ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΏΠΎΡΠ΅ΡΡΠ½Π½ΠΎΠΉ Π² Π»ΠΈΠ½ΠΈΡΡ
Π·Π° Π³ΠΎΠ΄ ΡΠ»Π΅ΠΊΡΡΠΎΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΡΡΠ΅ΡΠ±Π° ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Π΅ ΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ Π±ΠΎΠ»Π΅Π΅ Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠΈΡ
ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠ»Π°Π½ΠΎΠ²ΡΠΌΠΈ Π°Π²Π°ΡΠΈΠΉΠ½ΡΡ
ΡΠ΅ΠΌΠΎΠ½ΡΠΎΠ², ΠΏΡΠΎΠΊΠ»Π°Π΄ΠΊΠ° ΠΊΠ°Π±Π΅Π»ΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ Ρ ΠΎΠ΄Π½ΠΎ- ΠΈ ΡΡΠ΅Ρ
ΠΆΠΈΠ»ΡΠ½ΡΠΌΠΈ ΠΊΠ°Π±Π΅Π»ΡΠΌΠΈ Π½Π° Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ 10 ΠΈ 35 ΠΊΠ Π²ΠΌΠ΅ΡΡΠΎ Π²ΠΎΠ·Π΄ΡΡΠ½ΡΡ
Π²Π½Π΅ Π½Π°ΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π²ΠΏΠΎΠ»Π½Π΅ ΠΎΠΏΡΠ°Π²Π΄Π°Π½Π½Π°. ΠΡΠΈ ΡΡΠΎΠΌ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠ΅Π΄ΠΏΠΎΡΡΠΈΡΠ΅Π»ΡΠ½Π° ΠΏΡΠΎΠΊΠ»Π°Π΄ΠΊΠ° ΡΡΠ΅Ρ
ΠΆΠΈΠ»ΡΠ½ΡΡ
ΠΊΠ°Π±Π΅Π»Π΅ΠΉ. Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π² Π²ΠΈΠ΄Ρ, ΡΡΠΎ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΡΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΠΊΠ°Π±Π΅Π»ΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ ΡΠ°ΡΡΠ΅Ρ Π΅ΠΌΠΊΠΎΡΡΠ½ΡΠΉ ΡΠΎΠΊ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΡ Π½Π° Π·Π΅ΠΌΠ»Ρ, Π΄Π»Ρ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π² ΡΠ΅Π½ΡΡΠ°Ρ
ΠΏΠΈΡΠ°Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π° β Π΄ΡΠ³ΠΎΠ³Π°ΡΡΡΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΎΡΡ ΠΈΠ»ΠΈ ΡΠ΅Π·ΠΈΡΡΠΎΡΡ, ΡΡΠ΅Ρ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΡΠΎΡΡΡ
(Π΄ΠΎ 22 % ΠΎΡ ΡΡΠΎΠΈΠΌΠΎΡΡΠΈ 1 ΠΊΠΌ ΠΊΠ°Π±Π΅Π»ΡΠ½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ) ΡΠ΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π½Π΅ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π»ΠΈΡΠ½ΠΈΡΒ Π½Π° ΡΠ΄Π΅Π»Π°Π½Π½ΡΠ΅ Π½Π°ΠΌΠΈ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠ°Π±Π΅Π»ΡΠ½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ 6β35 ΠΊΠ Π² Π½Π΅Π½Π°ΡΠ΅Π»Π΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π²ΠΌΠ΅ΡΡΠΎ Π²ΠΎΠ·Π΄ΡΡΠ½ΡΡ
ΠΡΠΏΡΡΠ°Π½ΠΈΡ ΠΊΠ°Π±Π΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ Π½Π° ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΡΡ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΡΡ ΡΡΠΎΠΉΠΊΠΎΡΡΡ
The paper considers conditions for selection ofΒ power supply of the unit which is used for testing samples of cable products by thermal and dynamic stability currents. It has been shown that while conducting testing by thermal and dynamic stability currents at nominal cable voltage it is more justifiable to use a percussive energy accumulator, and in the case when the voltage is low an inductive energy accumulator is used.Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΡΠ»ΠΎΠ²ΠΈΡ Π²ΡΠ±ΠΎΡΠ° ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ° ΠΏΠΈΡΠ°Π½ΠΈΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΊΠ°Π±Π΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΡΠΎΠΊΠ°ΠΌΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΎΠΉΠΊΠΎΡΡΠΈ. ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ ΡΠΎΠΊΠ°ΠΌΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΎΠΉΠΊΠΎΡΡΠΈ ΠΏΡΠΈ Π½ΠΎΠΌΠΈΠ½Π°Π»ΡΠ½ΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΈ ΠΊΠ°Π±Π΅Π»Ρ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ΄Π°ΡΠ½ΡΠΉ Π½Π°ΠΊΠΎΠΏΠΈΡΠ΅Π»Ρ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΠΈ ΠΏΡΠΈ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΈ β ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΡΠΉ Π½Π°ΠΊΠΎΠΏΠΈΡΠ΅Π»Ρ ΡΠ½Π΅ΡΠ³ΠΈ
- β¦