1,587 research outputs found

    Resonant-state expansion of the Green's function of open quantum systems

    Full text link
    Our series of recent work on the transmission coefficient of open quantum systems in one dimension will be reviewed. The transmission coefficient is equivalent to the conductance of a quantum dot connected to leads of quantum wires. We will show that the transmission coefficient is given by a sum over all discrete eigenstates without a background integral. An apparent "background" is in fact not a background but generated by tails of various resonance peaks. By using the expression, we will show that the Fano asymmetry of a resonance peak is caused by the interference between various discrete eigenstates. In particular, an unstable resonance can strongly skew the peak of a nearby resonance.Comment: 7 pages, 7 figures. Submitted to International Journal of Theoretical Physics as an article in the Proceedings for PHHQP 2010 (http://www.math.zju.edu.cn/wjd/

    A Cross-Whiskers Junction as a Novel Fabrication Process for Intrinsic Josephson Junction

    Full text link
    A Bi2Sr2CaCu2O8+d cross-whiskers junction has been successfully discovered as a novel intrinsic Josephson junction without using any technique for micro-fabrication. Two Bi2Sr2CaCu2O8+d whisker crystals were placed crosswise on a MgO substrate and heated at 850C for 30 min. They were electrically connected at their c-planes. The measurement terminals were made at the four ends of the whiskers. The I-V characteristics of the cross-whiskers junction at 5K were found to show a clear multiple-branch structure with a spacing of approximately 15 mV that is a feature of the intrinsic Josephson junction. The critical current density Jc was estimated to be 1170 A/cm2. The branch-structure was strongly suppressed by the magnetic field above 1kOe.Comment: 4 pages, PDF fil

    Non-Hermitian Delocalization and Eigenfunctions

    Full text link
    Recent literature on delocalization in non-Hermitian systems has stressed criteria based on sensitivity of eigenvalues to boundary conditions and the existence of a non-zero current. We emphasize here that delocalization also shows up clearly in eigenfunctions, provided one studies the product of left- and right-eigenfunctions, as required on physical grounds, and not simply the squared modulii of the eigenfunctions themselves. We also discuss the right- and left-eigenfunctions of the ground state in the delocalized regime and suggest that the behavior of these functions, when considered separately, may be viewed as ``intermediate'' between localized and delocalized.Comment: 8 pages, 11 figures include

    Superconductivity in CVD Diamond Thin Film Well-Above Liquid Helium Temperature

    Full text link
    Diamond has always been adored as a jewel. Even more fascinating is its outstanding physical properties; it is the hardest material known in the world with the highest thermal conductivity. Meanwhile, when we turn to its electrical properties, diamond is a rather featureless electrical insulator. However, with boron doping, it becomes a p-type semiconductor, with boron acting as a charge acceptor. Therefore the recent news of superconductivity in heavily boron-doped diamond synthesized by high pressure sintering was received with considerable surprise. Opening up new possibilities for diamond-based electrical devices, a systematic investigation of these phenomena clearly needs to be achieved. Here we show unambiguous evidence of superconductivity in a diamond thin film deposited by a chemical vapor deposition (CVD) method. Furthermore the onset of the superconducting transition is found to be 7.4K, which is higher than the reported value in ref(7) and well above helium liquid temperature. This finding establishes the superconductivity to be a universal property of boron-doped diamond, demonstrating that device application is indeed a feasible challenge.Comment: 6 pages, 3 figure

    Finite Size Effects in Vortex Localization

    Full text link
    The equilibrium properties of flux lines pinned by columnar disorder are studied, using the analogy with the time evolution of a diffusing scalar density in a randomly amplifying medium. Near H_{c1}, the physical features of the vortices in the localized phase are shown to be determined by the density of states near the band edge. As a result, H_{c1} is inversely proportional to the logarithm of the sample size, and the screening length of the perpendicular magnetic field decreases with temperature. For large tilt the extended ground state turns out to wander in the plane perpendicular to the defects with exponents corresponding to a directed polymer in a random medium, and the energy difference between two competing metastable states in this case is extensive. The divergence of the effective potential associated with strong pinning centers as the tilt approaches its critical value is discussed as well.Comment: 10 pages, 2 figure

    d-like Symmetry of the Order Parameter and Intrinsic Josephson Effects in Bi2212 Cross-Whisker Junctions

    Full text link
    An intrinsic tunnel junction was made using two Bi-2212 single crystal whiskers. The two whiskers with a cross-angle were overlaid at their c-planes and connected by annealing. The angular dependence of the critical current density along the c-axis is of the d-wave symmetry. However, the angular dependence is much stronger than that of the conventional d-wave. Furthermore, the current vs. voltage characteristics of the cross-whiskers junctions show a multiple-branch structure at any cross-angle, indicating the formation of the intrinsic Josephson junction array.Comment: 4 pages PDF fil

    Winding Numbers, Complex Currents, and Non-Hermitian Localization

    Full text link
    The nature of extended states in disordered tight binding models with a constant imaginary vector potential is explored. Such models, relevant to vortex physics in superconductors and to population biology, exhibit a delocalization transition and a band of extended states even for a one dimensional ring. Using an analysis of eigenvalue trajectories in the complex plane, we demonstrate that each delocalized state is characterized by an (integer) winding number, and evaluate the associated complex current. Winding numbers in higher dimensions are also discussed.Comment: 4 pages, 2 figure

    Global universality of the two-layer neural network with the kk-rectified linear unit

    Full text link
    This paper concerns the universality of the two-layer neural network with the kk-rectified linear unit activation function with k=1,2,k=1,2,\ldots with a suitable norm without any restriction on the shape of the domain. This type of result is called global universality, which extends the previous result for k=1k=1 by the present authors. This paper covers kk-sigmoidal functions as an application of the fundamental result on kk-rectified linear unit functions

    Spectrum Analysis of the Type Ib Supernova 1999dn: Probable Identifications of C II and H-alpha

    Full text link
    Low resolution spectra of SN 1999dn at early times are presented and compared with synthetic spectra generated with the parameterized supernova synthetic-spectrum code SYNOW. We find that the spectra of SN 1999dn strongly resemble those of SN 1997X and SN 1984L, and hence we classify it as a Type Ib event. Line-identifications are established through spectrum synthesis. Strong evidence of both H-alpha and C II 6580 is found. We infer that H-alpha appears first, before the time of maximum brightness, and then is blended with and finally overwhelmed by the C II line after maximum; this favors a thin high-velocity hydrogen skin in this Type Ib supernova.Comment: 15 pages, 3 figures. Accepted for publication in Ap
    corecore