1,702 research outputs found
Magnetic Mesoporous Silica Nanorods Loaded with Ceria and Functionalized with Fluorophores for Multimodal Imaging
Multifunctional magnetic nanocomposites based on mesoporous silica have a wide range of potential applications in catalysis, biomedicine, or sensing. Such particles combine responsiveness to external magnetic fields with other functionalities endowed by the agents loaded inside the pores or conjugated to the particle surface. Different applications might benefit from specific particle morphologies. In the case of biomedical applications, mesoporous silica nanospheres have been extensively studied while nanorods, with a more challenging preparation, have attracted much less attention despite the positive impact on the therapeutic performance shown by seminal studies. Here, we report on a sol-gel synthesis of mesoporous rodlike silica particles of two distinct lengths (1.4 and 0.9 ÎŒm) and aspect ratios (4.7 and 2.2) using Pluronic P123 as a structure-directing template and rendering âŒ1 g of rods per batch. Iron oxide nanoparticles have been synthesized within the pores yielding maghemite (Îł-FeO) nanocrystals of elongated shape (âŒ7 nm Ă 5 nm) with a [110] preferential orientation along the rod axis and a superparamagnetic character. The performance of the rods as T-weighted MRI contrast agents has also been confirmed. In a subsequent step, the mesoporous silica rods were loaded with a cerium compound and their surface was functionalized with fluorophores (fluorescamine and Cyanine5) emitting at λ = 525 and 730 nm, respectively, thus highlighting the possibility of multiple imaging modalities. The biocompatibility of the rods was evaluated in vitro in a zebrafish (Danio rerio) liver cell line (ZFL), with results showing that neither long nor short rods with magnetic particles caused cytotoxicity in ZFL cells for concentrations up to 50 ÎŒg/ml. We advocate that such nanocomposites can find applications in medical imaging and therapy, where the influence of shape on performance can be also assesse
ECFA Detector R&D Panel, Review Report
Two special calorimeters are foreseen for the instrumentation of the very
forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to
measure the rate of low angle Bhabha scattering events with a precision better
than 10 at the ILC and 10 at CLIC, and a low polar-angle
calorimeter (BeamCal). The latter will be hit by a large amount of
beamstrahlung remnants. The intensity and the spatial shape of these
depositions will provide a fast luminosity estimate, as well as determination
of beam parameters. The sensors of this calorimeter must be radiation-hard.
Both devices will improve the e.m. hermeticity of the detector in the search
for new particles. Finely segmented and very compact electromagnetic
calorimeters will match these requirements. Due to the high occupancy, fast
front-end electronics will be needed. Monte Carlo studies were performed to
investigate the impact of beam-beam interactions and physics background
processes on the luminosity measurement, and of beamstrahlung on the
performance of BeamCal, as well as to optimise the design of both calorimeters.
Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and
prototypes are available. Prototypes of sensor planes fully assembled with
readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure
Measurement of the cross-section ratio sigma_{psi(2S)}/sigma_{J/psi(1S)} in deep inelastic exclusive ep scattering at HERA
The exclusive deep inelastic electroproduction of and
at an centre-of-mass energy of 317 GeV has been studied with the ZEUS
detector at HERA in the kinematic range GeV,
GeV and GeV, where is the photon virtuality, is the
photon-proton centre-of-mass energy and is the squared four-momentum
transfer at the proton vertex. The data for GeV were taken in
the HERA I running period and correspond to an integrated luminosity of 114
pb. The data for GeV are from both HERA I and HERA II
periods and correspond to an integrated luminosity of 468 pb. The decay
modes analysed were and for the
and for the . The cross-section ratio
has been measured as a function of
and . The results are compared to predictions of QCD-inspired
models of exclusive vector-meson production.Comment: 24 pages, 8 figure
Combined QCD and electroweak analysis of HERA data
A simultaneous fit of parton distribution functions (PDFs) and electroweak
parameters to HERA data on deep inelastic scattering is presented. The input
data are the neutral current and charged current inclusive cross sections which
were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In
addition, the polarisation of the electron beam was taken into account for the
ZEUS data recorded between 2004 and 2007. Results on the vector and
axial-vector couplings of the Z boson to u- and d-type quarks, on the value of
the electroweak mixing angle and the mass of the W boson are presented. The
values obtained for the electroweak parameters are in agreement with Standard
Model predictions.Comment: 32 pages, 10 figures, accepted by Phys. Rev. D. Small corrections
from proofing process and small change to Fig. 12 and Table
Limits on the effective quark radius from inclusive scattering at HERA
The high-precision HERA data allows searches up to TeV scales for Beyond the
Standard Model contributions to electron-quark scattering. Combined
measurements of the inclusive deep inelastic cross sections in neutral and
charged current scattering corresponding to a luminosity of around 1
fb have been used in this analysis. A new approach to the beyond the
Standard Model analysis of the inclusive data is presented; simultaneous
fits of parton distribution functions together with contributions of "new
physics" processes were performed. Results are presented considering a finite
radius of quarks within the quark form-factor model. The resulting 95% C.L.
upper limit on the effective quark radius is cm.Comment: 10 pages, 4 figures, accepted by Phys. Lett.
Search for a narrow baryonic state decaying to and in deep inelastic scattering at HERA
A search for a narrow baryonic state in the and
system has been performed in collisions at HERA with the ZEUS detector
using an integrated luminosity of 358 pb taken in 2003-2007. The search
was performed with deep inelastic scattering events at an centre-of-mass
energy of 318 GeV for exchanged photon virtuality, , between 20 and 100
. Contrary to evidence presented for such a state around 1.52
GeV in a previous ZEUS analysis using a sample of 121 pb taken in
1996-2000, no resonance peak was found in the invariant-mass
distribution in the range 1.45-1.7 GeV. Upper limits on the production cross
section are set.Comment: 16 pages, 4 figures, accepted by Phys. Lett. B. Minor changes from
journal reviewing process, including a small correction to figure
Measurement of neutral current e+/-p cross sections at high Bjorken x with the ZEUS detector
The neutral current e+/-p cross section has been measured up to values of
Bjorken x of approximately 1 with the ZEUS detector at HERA using an integrated
luminosity of 187 inv. pb of e-p and 142 inv. pb of e+p collisions at sqrt(s) =
318GeV. Differential cross sections in x and Q2, the exchanged boson
virtuality, are presented for Q2 geq 725GeV2. An improved reconstruction method
and greatly increased amount of data allows a finer binning in the high-x
region of the neutral current cross section and leads to a measurement with
much improved precision compared to a similar earlier analysis. The
measurements are compared to Standard Model expectations based on a variety of
recent parton distribution functions.Comment: 39 pages, 9 figure
High-E_T dijet photoproduction at HERA
The cross section for high-E_T dijet production in photoproduction has been
measured with the ZEUS detector at HERA using an integrated luminosity of 81.8
pb-1. The events were required to have a virtuality of the incoming photon,
Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the
range 142 < W < 293 GeV. Events were selected if at least two jets satisfied
the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV
and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of
the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to
the parton distributions in the photon and proton and effects beyond
next-to-leading order in QCD. Hence these data can be used to constrain further
the parton densities in the proton and photon.Comment: 36 pages, 13 figures, 20 tables, including minor revisions from
referees. Accepted by Phys. Rev.
Recommended from our members
Improved Constraints on Sterile Neutrino Mixing from Disappearance Searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 Experiments.
Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the Ξ_{ÎŒe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Îm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Îm_{41}^{2}<13ââeV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Îm_{41}^{2}<1.6âeV^{2}
- âŠ