400 research outputs found

    Development of Casbar: a Two-phase Flow Code for the Interior Ballistics Problem

    Get PDF
    Accurate modelling of gun interior ballistic processes aids in the design and analysis of guns and their propelling charges. Presently, the most accurate modelling of the interior ballistics problem is provided by two-phase, multidimensional computational fluid dynamics (CFD) codes. We present our development of a CFD code, Casbar, which solves a two-phase (gas/particulate) flow problem in axisymmetric geometries. Our model is based on the governing equations for two-phase flow derived from separated flow theory. A finite-volume discretisation of the governing equations is used. The resulting set of equations is solved with a timestep-splitting approach based on the separation of various physical processes. We also present the modelling for the component physics such as propellant combustion and interphase drag. In addition, the solver includes the motion of the projectile and its influence on the flow dynamics. The capabilities of the code are demonstrated with some verification exercises

    Two way coupled hypersonic fluid structure interaction simulations with Eilmer

    Get PDF
    Fluid Structure Interactions (FSI), if not managed appropriately are known to have contributed to the loss of several aerospace vehicles. As done for the X-43, FSI can be designed-out by making structures sufficiently rigid and by providing appropriate damping. In hypersonic cruise vehicles, this strategy is not applicable as stringent weight limits and large thermal loads result in structures with reduced stiffness [12]. Thus, the accurate simulation and prediction of FSI are essential to allow for the most effective design. In hypersonics, aeroelastic effects can result in rapid variations in pressure and thermal evolutions. The level of coupling between fluid and structure is typically is strong or two-way, which means that CFD and FEM solvers have to continuously exchange information in terms of nodal forces and displacement in order to produce an accurate solution. In this paper we present details of a fast implementation and first results of a FEM solver in the Eilmer CFD solver. Details are provided on the formulation of the structural solver, the fluid solver to appropriately account for the deforming boundaries, and the coupling approach. The results show that the simulations are in broad agreement with experimental data, but that an off-set exists in response frequency and amplitude. The resulting capability, with its ability to conduct time–accurate FSI simulations is a good tool to further investigate the underlying effects driving hypersonic FSI

    Escherichia coli ItaT is a Type II Toxin that Inhibits Translation by Acetylating Isoleucyl-tRNAIle

    Get PDF
    Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets. The antitoxin binds to cognate toxin and inhibits its function. Recently, TA modules whose toxins are GNAT-family acetyltransferases were described. For two such systems, the target of acetylation was shown to be aminoacyl-tRNA: the TacT toxin targets aminoacylated elongator tRNAs, while AtaT targets the amino acid moiety of initiating tRNAMet. We show that the itaRT gene pair from Escherichia coli encodes a TA module with acetyltransferase toxin ItaT that specifically and exclusively acetylates Ile-tRNAIle thereby blocking translation and inhibiting cell growth. ItaT forms a tight complex with the ItaR antitoxin, which represses the transcription of itaRT operon. A comprehensive bioinformatics survey of GNAT acetyltransferases reveals that enzymes encoded by validated or putative TA modules are common and form a distinct branch of the GNAT family tree. We speculate that further functional analysis of such TA modules will result in identification of enzymes capable of specifically targeting many, perhaps all, aminoacyl tRNAs

    Protein 4.1B Contributes to the Organization of Peripheral Myelinated Axons

    Get PDF
    Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber
    • …
    corecore