41,158 research outputs found

    Favoritism: Ethical Dilemmas Viewed Through Multiple Paradigms

    Get PDF
    Favoritism is a controversial issue in many cultural settings. Related terms include nepotism and cronyism; all three are identified with misconduct in the merit-based business world. The flip side is ethics — the principles of conduct governing an individual or a group (Merriam-Webster, 2012). According to John Dewey (1902), “Ethics is the science that deals with conduct insofar as this is considered to be right or wrong, good or bad.” Since favoritism is perceived as being linked to workplace misconduct, it is necessary to use ethics in examining this issue. The current study applied four lenses of ethics identified by Shapiro and Stefkovich (2011) to help people deal with ethical challenges: justice, critique, care, and the profession. Findings have implications for criteria used to handle ethical challenges in the workplace

    The flavour asymmetry of polarized anti-quarks in the nucleon

    Get PDF
    We present a study of the flavour asymmetry of polarized anti-quarks in the nucleon using the meson cloud model. We include contributions both from the vector mesons and the interference terms of pseudoscalar and vector mesons. Employing the bag model, we first give the polarized valence quark distribution of the ρ\rho meson and the interference distributions. Our calculations show that the interference effect mildly increases the prediction for \Delta \dbar(x)-\Delta \ubar(x) at intermediate xx region. We also discuss the contribution of `Pauli blocking' to the asymmetry.Comment: 22 pages, LaTex, 5 PS figures. Version to appear in Eur. Phys. J. C. An appendix is added for expressions for the helicity dependent fluctuation functions. An error in the programme for fluctuation function f_{(\pi\rho)\Delta /N} is corrected, which increases numerical results by about 10%. Unchanged conclusion

    Anomalous conductivity, Hall factor, magnetoresistance, and thermopower of accumulation layer in SrTiO3\text{SrTiO}_3

    Full text link
    We study the low temperature conductivity of the electron accumulation layer induced by the very strong electric field at the surface of SrTiO3\text{SrTiO}_3 sample. Due to the strongly nonlinear lattice dielectric response, the three-dimensional density of electrons n(x)n(x) in such a layer decays with the distance from the surface xx very slowly as n(x)1/x12/7n(x) \propto 1/x^{12/7}. We show that when the mobility is limited by the surface scattering the contribution of such a tail to the conductivity diverges at large xx because of growing time electrons need to reach the surface. We explore truncation of this divergence by the finite sample width, by the bulk scattering rate, or by the crossover to the bulk linear dielectric response with the dielectric constant κ\kappa. As a result we arrive at the anomalously large mobility, which depends not only on the rate of the surface scattering, but also on the physics of truncation. Similar anomalous behavior is found for the Hall factor, the magnetoresistance, and the thermopower

    Collapse of electrons to a donor cluster in SrTiO3_3

    Full text link
    It is known that a nucleus with charge ZeZe where Z>170Z>170 creates electron-positron pairs from the vacuum. These electrons collapse onto the nucleus resulting in a net charge Zn<ZZ_n<Z while the positrons are emitted. This effect is due to the relativistic dispersion law. The same reason leads to the collapse of electrons to the charged impurity with a large charge number ZZ in narrow-band gap semiconductors and Weyl semimetals as well as graphene. In this paper, a similar effect of electron collapse and charge renormalization is found for donor clusters in SrTiO3_3 (STO), but with a very different origin. At low temperatures, STO has an enormously large dielectric constant. Because of this, the nonlinear dielectric response becomes dominant when the electric field is not too small. We show that this leads to the collapse of surrounding electrons into a charged spherical donor cluster with radius RR when its total charge number ZZ exceeds a critical value ZcR/aZ_c\simeq R/a where aa is the lattice constant. Using the Thomas-Fermi approach, we find that the net charge ZneZ_ne grows with ZZ until ZZ exceeds another value Z(R/a)9/7Z^*\simeq(R/a)^{9/7}. After this point, ZnZ_n remains Z\sim Z^*. We extend our results to the case of long cylindrical clusters. Our predictions can be tested by creating discs and stripes of charge on the STO surface
    corecore