41,158 research outputs found
Favoritism: Ethical Dilemmas Viewed Through Multiple Paradigms
Favoritism is a controversial issue in many cultural settings. Related terms include nepotism and cronyism; all three are identified with misconduct in the merit-based business world. The flip side is ethics — the principles of conduct governing an individual or a group (Merriam-Webster, 2012). According to John Dewey (1902), “Ethics is the science that deals with conduct insofar as this is considered to be right or wrong, good or bad.” Since favoritism is perceived as being linked to workplace misconduct, it is necessary to use ethics in examining this issue. The current study applied four lenses of ethics identified by Shapiro and Stefkovich (2011) to help people deal with ethical challenges: justice, critique, care, and the profession. Findings have implications for criteria used to handle ethical challenges in the workplace
Dundee Discussion Papers in Economics 155:Lobbying for protection under uncertainty: a real option approach
The flavour asymmetry of polarized anti-quarks in the nucleon
We present a study of the flavour asymmetry of polarized anti-quarks in the
nucleon using the meson cloud model. We include contributions both from the
vector mesons and the interference terms of pseudoscalar and vector mesons.
Employing the bag model, we first give the polarized valence quark distribution
of the meson and the interference distributions. Our calculations show
that the interference effect mildly increases the prediction for \Delta
\dbar(x)-\Delta \ubar(x) at intermediate region. We also discuss the
contribution of `Pauli blocking' to the asymmetry.Comment: 22 pages, LaTex, 5 PS figures. Version to appear in Eur. Phys. J. C.
An appendix is added for expressions for the helicity dependent fluctuation
functions. An error in the programme for fluctuation function
f_{(\pi\rho)\Delta /N} is corrected, which increases numerical results by
about 10%. Unchanged conclusion
Anomalous conductivity, Hall factor, magnetoresistance, and thermopower of accumulation layer in
We study the low temperature conductivity of the electron accumulation layer
induced by the very strong electric field at the surface of
sample. Due to the strongly nonlinear lattice dielectric response, the
three-dimensional density of electrons in such a layer decays with the
distance from the surface very slowly as . We show
that when the mobility is limited by the surface scattering the contribution of
such a tail to the conductivity diverges at large because of growing time
electrons need to reach the surface. We explore truncation of this divergence
by the finite sample width, by the bulk scattering rate, or by the crossover to
the bulk linear dielectric response with the dielectric constant . As a
result we arrive at the anomalously large mobility, which depends not only on
the rate of the surface scattering, but also on the physics of truncation.
Similar anomalous behavior is found for the Hall factor, the magnetoresistance,
and the thermopower
Collapse of electrons to a donor cluster in SrTiO
It is known that a nucleus with charge where creates
electron-positron pairs from the vacuum. These electrons collapse onto the
nucleus resulting in a net charge while the positrons are emitted. This
effect is due to the relativistic dispersion law. The same reason leads to the
collapse of electrons to the charged impurity with a large charge number in
narrow-band gap semiconductors and Weyl semimetals as well as graphene. In this
paper, a similar effect of electron collapse and charge renormalization is
found for donor clusters in SrTiO (STO), but with a very different origin.
At low temperatures, STO has an enormously large dielectric constant. Because
of this, the nonlinear dielectric response becomes dominant when the electric
field is not too small. We show that this leads to the collapse of surrounding
electrons into a charged spherical donor cluster with radius when its total
charge number exceeds a critical value where is the
lattice constant. Using the Thomas-Fermi approach, we find that the net charge
grows with until exceeds another value .
After this point, remains . We extend our results to the case
of long cylindrical clusters. Our predictions can be tested by creating discs
and stripes of charge on the STO surface
- …
