1 research outputs found
Parallel updating cellular automaton models of driven diffusive Frenkel-Kontorova-type systems
Three cellular automaton (CA) models of increasing complexity are introduced
to model driven diffusive systems related to the generalized Frenkel-Kontorova
(FK) models recently proposed by Braun [Phys.Rev.E58, 1311 (1998)]. The models
are defined in terms of parallel updating rules. Simulation results are
presented for these models. The features are qualitatively similar to those
models defined previously in terms of sequentially updating rules. Essential
features of the FK model such as phase transitions, jamming due to atoms in the
immobile state, and hysteresis in the relationship between the fraction of
atoms in the running state and the bias field are captured. Formulating in
terms of parallel updating rules has the advantage that the models can be
treated analytically by following the time evolution of the occupation on every
site of the lattice. Results of this analytical approach are given for the two
simpler models. The steady state properties are found by studying the stable
fixed points of a closed set of dynamical equations obtained within the
approximation of retaining spatial correlations only upto two nearest
neighboring sites. Results are found to be in good agreement with numerical
data.Comment: 26 pages, 4 eps figure