49,183 research outputs found
Finite element implementation of state variable-based viscoplasticity models
The implementation of state variable-based viscoplasticity models is made in a general purpose finite element code for structural applications of metals deformed at elevated temperatures. Two constitutive models, Walker's and Robinson's models, are studied in conjunction with two implicit integration methods: the trapezoidal rule with Newton-Raphson iterations and an asymptotic integration algorithm. A comparison is made between the two integration methods, and the latter method appears to be computationally more appealing in terms of numerical accuracy and CPU time. However, in order to make the asymptotic algorithm robust, it is necessary to include a self adaptive scheme with subincremental step control and error checking of the Jacobian matrix at the integration points. Three examples are given to illustrate the numerical aspects of the integration methods tested
Rational Approximate Symmetries of KdV Equation
We construct one-parameter deformation of the Dorfman Hamiltonian operator
for the Riemann hierarchy using the quasi-Miura transformation from topological
field theory. In this way, one can get the approximately rational symmetries of
KdV equation and then investigate its bi-Hamiltonian structure.Comment: 14 pages, no figure
Radiolabeling human peripheral blood stem cells for positron emission tomography (PET) imaging in young rhesus monkeys.
These studies focused on a new radiolabeling technique with copper ((64)Cu) and zirconium ((89)Zr) for positron emission tomography (PET) imaging using a CD45 antibody. Synthesis of (64)Cu-CD45 and (89)Zr-CD45 immunoconjugates was performed and the evaluation of the potential toxicity of radiolabeling human peripheral blood stem cells (hPBSC) was assessed in vitro (viability, population doubling times, colony forming units). hPBSC viability was maintained as the dose of (64)Cu-TETA-CD45 increased from 0 (92%) to 160 µCi/mL (76%, p>0.05). Radiolabeling efficiency was not significantly increased with concentrations of (64)Cu-TETA-CD45 >20 µCi/mL (p>0.50). Toxicity affecting both growth and colony formation was observed with hPBSC radiolabeled with ≥40 µCi/mL (p<0.05). For (89)Zr, there were no significant differences in viability (p>0.05), and a trend towards increased radiolabeling efficiency was noted as the dose of (89)Zr-Df-CD45 increased, with a greater level of radiolabeling with 160 µCi/mL compared to 0-40 µCi/mL (p<0.05). A greater than 2,000 fold-increase in the level of (89)Zr-Df-CD45 labeling efficiency was observed when compared to (64)Cu-TETA-CD45. Similar to (64)Cu-TETA-CD45, toxicity was noted when hPBSC were radiolabeled with ≥40 µCi/mL (p<0.05) (growth, colony formation). Taken together, 20 µCi/mL resulted in the highest level of radiolabeling efficiency without altering cell function. Young rhesus monkeys that had been transplanted prenatally with 25×10(6) hPBSC expressing firefly luciferase were assessed with bioluminescence imaging (BLI), then 0.3 mCi of (89)Zr-Df-CD45, which showed the best radiolabeling efficiency, was injected intravenously for PET imaging. Results suggest that (89)Zr-Df-CD45 was able to identify engrafted hPBSC in the same locations identified by BLI, although the background was high
On finite element implementation and computational techniques for constitutive modeling of high temperature composites
The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered
Phenomenological study of the atypical heavy flavor production observed at the Fermilab Tevatron
We address known discrepancies between the heavy flavor properties of jets
produced at the Tevatron collider and the prediction of conventional-QCD
simulations. In this study, we entertain the possibility that these effects are
real and due to new physics. We show that all anomalies can be simultaneously
fitted by postulating the additional pair production of light bottom squarks
with a 100% semileptonic branching fraction.Comment: 30 pages, 13 figures, 3 tables. Submitted to Phys. Rev.
Organic particulate matter formation at varying relative humidity using surrogate secondary and primary organic compounds with activity corrections in the condensed phase obtained using a method based on the Wilson equation
International audienceSecondary organic aerosol (SOA) formation in the atmosphere is currently often modeled using a multiple lumped "two-product" (N·2p) approach. The N·2p approach neglects: 1) variation of activity coefficient (?i) values and mean molecular weight MW in the particulate matter (PM) phase; 2) water uptake into the PM; and 3) the possibility of phase separation in the PM. This study considers these effects by adopting an (N·2p)?, MW ,? approach (? is a phase index). Specific chemical structures are assigned to 25 lumped SOA compounds and to 15 representative primary organic aerosol (POA) compounds to allow calculation of ?i and MW values. The SOA structure assignments are based on chamber-derived 2p gas/particle partition coefficient values coupled with known effects of structure on vapor pressure pL,i° (atm). To facilitate adoption of the (N·2p)?, MW, ? approach in large-scale models, this study also develops CP-Wilson.1, a group-contribution ?i-prediction method that is more computationally economical than the UNIFAC model of Fredenslund et al. (1975). Group parameter values required by CP-Wilson.1 are obtained by fitting ?i values to predictions from UNIFAC. The (N·2p)?,MW, ? approach is applied (using CP-Wilson.1) to several real ?-pinene/O3 chamber cases for high reacted hydrocarbon levels (?HC?400 to 1000 ?g m?3) when relative humidity (RH) ?50%. Good agreement between the chamber and predicted results is obtained using both the (N·2p)?, MW, ? and N·2p approaches, indicating relatively small water effects under these conditions. However, for a hypothetical ?-pinene/O3 case at ?HC=30 ?g m?3 and RH=50%, the (N·2p)?, MW, ? approach predicts that water uptake will lead to an organic PM level that is more double that predicted by the N·2p approach. Adoption of the (N·2p)?, MW, ? approach using reasonable lumped structures for SOA and POA compounds is recommended for ambient PM modeling
Self-compensation in manganese-doped ferromagnetic semiconductors
We present a theory of interstitial Mn in Mn-doped ferromagnetic
semiconductors. Using density-functional theory, we show that under the
non-equilibrium conditions of growth, interstitial Mn is easily formed near the
surface by a simple low-energy adsorption pathway. In GaAs, isolated
interstitial Mn is an electron donor, each compensating two substitutional Mn
acceptors. Within an impurity-band model, partial compensation promotes
ferromagnetic order below the metal-insulator transition, with the highest
Curie temperature occurring for 0.5 holes per substitutional Mn.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Surface response of spherical core-shell structured nanoparticle by optically induced elastic oscillations of soft shell against hard core
The optically induced oscillatory response of a spherical two-component,
shell-core structured, nanoparticle by nodeless elastic vibrations of soft
peripheral shell against hard and dynamically immobile inner core is
considered. The eigenfrequencies of the even-parity, spheroidal and odd-parity
torsional vibrational modes trapped in the finite-depth shell are obtained
which are of practical interest for modal specification of individual
resonances in spectra of resonant scattering of long wavelength electromagnetic
waves by ultrafine particles.Comment: Surface Review and Letters (World Scientific) Year: 2009 Vol: 16
Issue: 1 (February 2009) Page: 5 - 1
- …