8,058 research outputs found
A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina.
Our understanding of the relevance of peripheral retinal abnormalities to disease in general and in age-related macular degeneration (AMD) in particular is limited by the lack of detailed peripheral imaging studies. The purpose of this study was to develop image grading protocols suited to ultra-widefield imaging (UWFI) in an aged population
Multi-particle-collision dynamics: Flow around a circular and a square cylinder
A particle-based model for mesoscopic fluid dynamics is used to simulate
steady and unsteady flows around a circular and a square cylinder in a
two-dimensional channel for a range of Reynolds number between 10 and 130.
Numerical results for the recirculation length, the drag coefficient, and the
Strouhal number are reported and compared with previous experimental
measurements and computational fluid dynamics data. The good agreement
demonstrates the potential of this method for the investigation of complex
flows.Comment: 6 pages, separated figures in .jpg format, to be published in
Europhysics Letter
Does Scientific Progress Consist in Increasing Knowledge or Understanding?
Bird argues that scientific progress consists in increasing knowledge. Dellsén objects that increasing knowledge is neither necessary nor sufficient for scientific progress, and argues that scientific progress rather consists in increasing understanding. Dellsén also contends that unlike Bird’s view, his view can account for the scientific practices of using idealizations and of choosing simple theories over complex ones. I argue that Dellsén’s criticisms against Bird’s view fail, and that increasing understanding cannot account for scientific progress, if acceptance, as opposed to belief, is required for scientific understanding
Computer simulations of an impurity in a granular gas under planar Couette flow
We present in this work results from numerical solutions, obtained by means
of the direct simulation Monte Carlo (DSMC) method, of the Boltzmann and
Boltzmann--Lorentz equations for an impurity immersed in a granular gas under
planar Couette flow. The DSMC results are compared with the exact solution of a
recent kinetic model for the same problem. The results confirm that, in steady
states and over a wide range of parameter values, the state of the impurity is
enslaved to that of the host gas: it follows the same flow velocity profile,
its concentration (relative to that of the granular gas) is constant in the
bulk region, and the impurity/gas temperature ratio is also constant. We
determine also the rheological properties and nonlinear hydrodynamic transport
coefficients for the impurity, finding a good semi-quantitative agreement
between the DSMC results and the theoretical predictions.Comment: 23 pages, 11 figures; v2: minor change
Deep shower interpretation of the cosmic ray events observed in excess of the Greisen-Zatsepin-Kuzmin energy
We consider the possibility that the ultra-high-energy cosmic ray flux has a
small component of exotic particles which create showers much deeper in the
atmosphere than ordinary hadronic primaries. It is shown that applying the
conventional AGASA/HiRes/Auger data analysis procedures to such exotic events
results in large systematic biases in the energy spectrum measurement. SubGZK
exotic showers may be mis-reconstructed with much higher energies and mimick
superGZK events. Alternatively, superGZK exotic showers may elude detection by
conventional fluorescence analysis techniques.Comment: 22 pages, 5 figure
Impurity in a granular gas under nonlinear Couette flow
We study in this work the transport properties of an impurity immersed in a
granular gas under stationary nonlinear Couette flow. The starting point is a
kinetic model for low-density granular mixtures recently proposed by the
authors [Vega Reyes F et al. 2007 Phys. Rev. E 75 061306]. Two routes have been
considered. First, a hydrodynamic or normal solution is found by exploiting a
formal mapping between the kinetic equations for the gas particles and for the
impurity. We show that the transport properties of the impurity are
characterized by the ratio between the temperatures of the impurity and gas
particles and by five generalized transport coefficients: three related to the
momentum flux (a nonlinear shear viscosity and two normal stress differences)
and two related to the heat flux (a nonlinear thermal conductivity and a cross
coefficient measuring a component of the heat flux orthogonal to the thermal
gradient). Second, by means of a Monte Carlo simulation method we numerically
solve the kinetic equations and show that our hydrodynamic solution is valid in
the bulk of the fluid when realistic boundary conditions are used. Furthermore,
the hydrodynamic solution applies to arbitrarily (inside the continuum regime)
large values of the shear rate, of the inelasticity, and of the rest of
parameters of the system. Preliminary simulation results of the true Boltzmann
description show the reliability of the nonlinear hydrodynamic solution of the
kinetic model. This shows again the validity of a hydrodynamic description for
granular flows, even under extreme conditions, beyond the Navier-Stokes domain.Comment: 23 pages, 11 figures; v2: Preliminary DSMC results from the Boltzmann
equation included, Fig. 11 is ne
Spurious diffusion in particle simulations of the Kolmogorov flow
Particle simulations of the Kolmogorov flow are analyzed by the
Landau-Lifshitz fluctuating hydrodynamics. It is shown that a spurious
diffusion of the center of mass corrupts the statistical properties of the
flow. The analytical expression for the corresponding diffusion coefficient is
derived.Comment: 10 pages, no figure
Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates
One or more small holes provide non-destructive windows to observe
corresponding closed systems, for example by measuring long time escape rates
of particles as a function of hole sizes and positions. To leading order the
escape rate of chaotic systems is proportional to the hole size and independent
of position. Here we give exact formulas for the subsequent terms, as sums of
correlation functions; these depend on hole size and position, hence yield
information on the closed system dynamics. Conversely, the theory can be
readily applied to experimental design, for example to control escape rates.Comment: Originally 4 pages and 2 eps figures incorporated into the text; v2
has more numerical results and discussion: now 6 pages, 4 figure
Life at high Deborah number
In many biological systems, microorganisms swim through complex polymeric
fluids, and usually deform the medium at a rate faster than the inverse fluid
relaxation time. We address the basic properties of such life at high Deborah
number analytically by considering the small-amplitude swimming of a body in an
arbitrary complex fluid. Using asymptotic analysis and differential geometry,
we show that for a given swimming gait, the time-averaged leading-order
swimming kinematics of the body can be expressed as an integral equation on the
solution to a series of simpler Newtonian problems. We then use our results to
demonstrate that Purcell's scallop theorem, which states that time-reversible
body motion cannot be used for locomotion in a Newtonian fluid, breaks down in
polymeric fluid environments
On the velocity distributions of the one-dimensional inelastic gas
We consider the single-particle velocity distribution of a one-dimensional
fluid of inelastic particles. Both the freely evolving (cooling) system and the
non-equilibrium stationary state obtained in the presence of random forcing are
investigated, and special emphasis is paid to the small inelasticity limit. The
results are obtained from analytical arguments applied to the Boltzmann
equation along with three complementary numerical techniques (Molecular
Dynamics, Direct Monte Carlo Simulation Methods and iterative solutions of
integro-differential kinetic equations). For the freely cooling fluid, we
investigate in detail the scaling properties of the bimodal velocity
distribution emerging close to elasticity and calculate the scaling function
associated with the distribution function. In the heated steady state, we find
that, depending on the inelasticity, the distribution function may display two
different stretched exponential tails at large velocities. The inelasticity
dependence of the crossover velocity is determined and it is found that the
extremely high velocity tail may not be observable at ``experimentally
relevant'' inelasticities.Comment: Latex, 14 pages, 12 eps figure
- …