2 research outputs found

    How universal is the one-particle Green's function of a Luttinger liquid?

    Full text link
    The one-particle Green's function of the Tomonaga-Luttinger model for one-dimensional interacting Fermions is discussed. Far away from the origin of the plane of space-time coordinates the function falls off like a power law. The exponent depends on the direction within the plane. For a certain form of the interaction potential or within an approximated cut-off procedure the different exponents only depend on the strength of the interaction at zero momentum and can be expressed in terms of the Luttinger liquid parameters KρK_{\rho} and KσK_{\sigma} of the model at hand. For a more general interaction and directions which are determined by the charge velocity vρv_{\rho} and spin velocity vσv_{\sigma} the exponents also depend on the smoothness of the interaction at zero momentum and the asymptotic behavior of the Green's function is not given by the Luttinger liquid parameters alone. This shows that the physics of large space-time distances in Luttinger liquids is less universal than is widely believed.Comment: 5 pages with 2 figure
    corecore