2 research outputs found
How universal is the one-particle Green's function of a Luttinger liquid?
The one-particle Green's function of the Tomonaga-Luttinger model for
one-dimensional interacting Fermions is discussed. Far away from the origin of
the plane of space-time coordinates the function falls off like a power law.
The exponent depends on the direction within the plane. For a certain form of
the interaction potential or within an approximated cut-off procedure the
different exponents only depend on the strength of the interaction at zero
momentum and can be expressed in terms of the Luttinger liquid parameters
and of the model at hand. For a more general
interaction and directions which are determined by the charge velocity
and spin velocity the exponents also depend on the
smoothness of the interaction at zero momentum and the asymptotic behavior of
the Green's function is not given by the Luttinger liquid parameters alone.
This shows that the physics of large space-time distances in Luttinger liquids
is less universal than is widely believed.Comment: 5 pages with 2 figure